Accident Scenarios

Preliminary estimates for asynchronous dump

A. Presland & V. Vlachoudis (AB/ABT/EET)
Introduction

• Motivation
 – Prediction of ΔT and total load w.r.t. damage limits
 • graphite jaws
 • copper cooling

• Scope
 – realistic asynchronous dump distribution
 – usual (detailed) IR7 geometry
 – simple adiabatic model for ΔT calculation

• Changes from previous simulation
 – finer data mesh around impact positions
 • avoids “dilution” of energy during scoring (now 100 micron in x,y)
 – $C_p(T)$ quoted for °K in reference but it is actually for °C
Input Data

• Proton distributions
 – from MAD
 – 23 bunchs in total
 – (x,y,z) and (x’,y’) at TCP.C6L7 front face
 – sampled in simulation to give 20K simulated p+/bunch (460K total)
Pre-processing

- Input data was preprocessed in MatLab to give correct rotational and transverse transforms to the simulation coordinate system.
Simulation

• TCDQ removes swept beam beyond 10σ
 – totally removes outer 3 bunches
 – truncates some remainder bunches
• Simulation handles 20 innermost bunches
 – each processed separately
 – 10σ cut applied at runtime
• Output
 – outputs summed to give expected full sweep load
 – output data are per primary proton (post-process)
Post-processing (2)

- ΔT calculation
 - takes scaled J/cm3 data as input
 - employs temperature dependant specific heats

 \[
 c_p^{\text{graph}}(T) = 528.75 - 205.9 T^{1/3} + 154.21 T^{1/2} - 1.53 T + 9.15 \times 10^{-5} T^2
 \]
 \[
 c_p^{\text{Cu}}(T) = 381.12 + 0.16 T - 1.09 \times 10^{-4} T^2
 \]
 - ΔT can be extracted, assuming system is initially at 20°C, by solving numerically the upper limit of

 \[
 \frac{dE}{dV} = \rho \int_{T_0}^{T_0 + \Delta T} c_p(T) dT
 \]
Post-processing (1)

- MatLab used to post-process data.
 - Input data
 - GeV/cm3 per proton in a Cartesian mesh
 - Scaling
 - scale to expected 1.1×10^{11} protons per bunch
 - adjust for TCDQ scraping (9.5%)
 - Processing
 - convert to J/cm3
 - integrate per material region (total load)
 - locate positions of max deposit per material region
 - create profiles intercepting max in each coordinate
Results: Jaw loads

Table 1 Total deposited energy per region in Horizontal collimator TCP6L1

<table>
<thead>
<tr>
<th>Region</th>
<th>Total Deposit (J)</th>
<th>Statistical Error</th>
</tr>
</thead>
<tbody>
<tr>
<td>Graphite Left Jaw</td>
<td>74.8</td>
<td>? 31 %</td>
</tr>
<tr>
<td>Graphite Right Jaw</td>
<td>27.59</td>
<td>? 30 %</td>
</tr>
<tr>
<td>Copper Left Jaw</td>
<td>22.12</td>
<td>? 31 %</td>
</tr>
<tr>
<td>Copper Right Jaw</td>
<td>20.55</td>
<td>? 31 %</td>
</tr>
</tbody>
</table>

Table 2 Total deposited energy per region in Skewed collimator TCP6L1

<table>
<thead>
<tr>
<th>Region</th>
<th>Total Deposit (J)</th>
<th>Statistical Error</th>
</tr>
</thead>
<tbody>
<tr>
<td>Graphite Left Jaw</td>
<td>186.6</td>
<td>? 31 %</td>
</tr>
<tr>
<td>Graphite Right Jaw</td>
<td>182.5</td>
<td>? 31 %</td>
</tr>
<tr>
<td>Copper Left Jaw</td>
<td>213.4</td>
<td>? 32 %</td>
</tr>
<tr>
<td>Copper Right Jaw</td>
<td>270.9</td>
<td>? 32 %</td>
</tr>
</tbody>
</table>

Table 3 Total deposited energy per region in Secondary collimator TCSPA6L1

<table>
<thead>
<tr>
<th>Region</th>
<th>Total Deposit (J)</th>
<th>Statistical Error</th>
</tr>
</thead>
<tbody>
<tr>
<td>Graphite Left Jaw</td>
<td>9390</td>
<td>? 8 %</td>
</tr>
<tr>
<td>Graphite Right Jaw</td>
<td>9155</td>
<td>? 4 %</td>
</tr>
<tr>
<td>Copper Left Jaw</td>
<td>6161</td>
<td>? 16 %</td>
</tr>
<tr>
<td>Copper Right Jaw</td>
<td>8099</td>
<td>? 4 %</td>
</tr>
</tbody>
</table>
Results: Flange loads

- Only TCSGA6 flanges are in geometry

- upstream inner: 363.3 ± 6% J
- upstream outer: 142.0 ± 6% J
- downstream inner: 730.3 ± 9% J
- downstream outer: 171.9 ± 10% J
Results: ΔT

TCPC6 (Prim. Horizontal) impacted jaw.

$\Delta T_{\text{max}}^{\text{graphite}} \approx 160^\circ C$

$\Delta T_{\text{max}}^{\text{Cu}} \approx 0.38^\circ C$
Results: ΔT

TCSSG6 (secondary)

$\Delta T_{\text{max}}^{\text{graphite}} \approx 11^\circ C$
$\Delta T_{\text{max}}^{\text{Cu}} \approx 17^\circ C$
Comments

• Reasonable agreement now exists with previous (simple) model.
 – Differences attributed to greater level of detail
 • pencil beam → diverging beam
 • interpolated Cp → integrated function of T
 • no chamfers → chamfers

• Data previously handed to Alessandro still valid for everything except TCPC6 (fine mesh)
 – His interest was in TCS so everything is OK