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Aims of Investigations:

• Calculations of energy deposition, determination of electronic

loss and electronic excitation produced by a proton beam of 7 TeV

in a collimator and other materials.

• Development of theoretical models for the calculation of the

effective temperature rise in the collimator materials under

irradiation from a 7 TeV proton beam.

• Calculations of radiation damage production in collimator

materials irradiated by a 7 TeV proton beam taking into account

deposited energy, electronic excitation and elastic collisions in

these materials.

• Modeling of microscopic and macroscopic damage formation in

different collimator materials and other materials produced by

shock wave propagation initiated by a 7 TeV proton beam.
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Development of theoretical models for the calculation of the

effective temperature rise in the collimator materials under

irradiation from a 7 TeV proton beam.

Materials:

• Copper

• Graphite

Physical Processes:

• Deposited energy by 7 TeV proton beam from FLUKA code

• Electronic excitation of electronic subsystem of materials

• Electronic thermal conductivity of materials

• Electron-phonon coupling in materials

• Phonon thermal conductivity of ionic subsystem
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Energy deposition per 7 TeV proton in copper

as a function of the depth into target and the

radial coordinate.
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Energy deposition per 7 TeV proton in
graphite as a function of the depth into

target and the radial coordinate.
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«Thermal Spike » Model
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r0- characteristic distance for

deposited energy (r0>1 cm)

calculated by FLUKA,

RT = (De_ep)_
D = 0.2 mm

Dmin = 0.016 mm

Electronic Temperature:

Ionic Temperature:



Characteristic times in «Thermal spike » model:
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_e ~ 10-16 s - characteristic time of the electron - electron interaction;

_ e-ph ~ 10-13 s - characteristic time of the electron - phonon interaction;

_ ph-ph ~ 10-12 ÷10-11s - characteristic time of  phonon - phonon interaction;



Main equations:

Cylindrical geometry
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 is the lattice thermal conductivity;

_
_
 is the thermal conductivity of electrons,

_
i
  is the thermal capacity of ionic subsystem,

_
_
 is the thermal capacity of electronic subsystem,

A(r,t) is the effective energy source in electronic subsystem



Initial and Boundary Conditions in Thermal Spike:
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The values used in the numerical calculations

for Cu.
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Crystal lattice temperature profile near 7 TeV proton beam with the beam

size D
b
 = 0.2 mm in Cu collimator material as a function of the radial

coordinate at different times on the depth-length into the target L= 60 cm.
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Crystal lattice temperature profile near 7 TeV proton beam with the beam

size D
b
 = 0.016 mm in Cu collimator material as a function of the radial

coordinate at different times on the depth-length into the target L= 60 cm.
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Data used in the numerical calculations for

Graphite
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Temperature dependence of the thermal conductivity of ionic subsystem

of high density of graphite with 0% porosity.

Electronic specific heat: Ce = 3/2 NekB = 1 J cm-3K-1.

Electronic thermal conductivity:  Ke = 2 J cm-1s-1K-1.

0 porositty

y = 26.44x
-0.7571

0.04

0.09

0.14

0.19

0.24

0.29

0 200 400 600 800 1000 1200 1400 1600 1800 2000T, °K

 Ki,

Cal Sec-1 cm-1K-1

0% porosity



10 December, CERN, Geneva

20 porossity

y = 8.5958x
-0.6812

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0 200 400 600 800 1000 1200 1400

20% porosity

Temperature dependence of the thermal conductivity of ionic subsystem

of graphite with 20% internal porosity.

Ki,

Cal Sec-1 cm-1K-1

T, °K



Thermal Diffusivity--Graphitee (3)
y = 1E-15x6 - 6E-12x5 + 9E-09x4 - 9E-06x3 + 0.0043x2 - 1.1224x + 122.
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Temperature dependence of the thermal diffusivity of ionic subsystem of graphite.
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Deposited energy in electronic subsystem of graphite produced by one

bunch of proton beam with 1011protons and the energy of each

proton 7 TeV as a function of the radial coordinate on the depth into

target Z= 60 cm.
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Crystal lattice temperature distribution profile near 7 TeV proton beam

(one bunch) with the minimum beam size Db = 0.016 mm in Graphite

collimator material as a function of the radial coordinate at the time 100ns

on the depth-length into the target 60 cm.
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Modeling of microscopic and macroscopic damage formation
in different collimator materials produced by shock wave

propagation initiated by a 7 TeV proton beam.

 

SW

LTB

(LTB = DSW TB), DSW  105cm/s,  TB = 25 ns,  LTB  2.5x10-3cm.

SW is unknown?

 

1) Overlapping of shock waves produced by two neighboring bunches:

LTB  SW
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SW

LTB

 

2) No overlapping of shock waves produced by two neighboring bunches:

LTB >> SW



Theoretical model of shock-wave propagation in

materials based on Thomas-Fermi-Dirac (TFD)

microscopic model.

Main assumptions of TFD model:

•       “Jelly” model of metal

•       degenerated electron gas with the temperature T
e
:

                T
e 
<T

F
,       T

F   
is the Fermi temperature,

                T
F
  n

e
2/3,   n

e
 is the electron density.

•      cold ions with  the temperature of ions T
i
:   T

e
 >>T

i
 

•        As     V
F
 >> C

O
,  (V

F
  108 cm/ sec,  C

0
  5.105cm/sec )

              Where C
0
 is the sound velocity.

              Electronic distribution in the potential  is equilibrium

              and can be described by TFD model.
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Main System of Equations:
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 Here  V, n, M   are the velocity, density and mass of ions in material,

 _ is the electrostatic potential,  e is the electron charge,

 ne  is the density of electron gas, A is the term taking into account  the

exchange correction constant to electron density in TFD model,

µ0  is the Fermi energy,                                             is the Plank constant.
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Putting (7) into (6) and taking into account (5) we will get the wave equation
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Here C is the sound velocity obtained using TFD model
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Stationary one dimensional Shock Wave with the velocity D:
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From the equations (1),(2) we have
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In the case 1

0
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µ

e we have following relations
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Equation for the electrical potential

From the equation we can find the width of shock wave
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Here U is the velocity of atoms behind the shock wave
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LTB

SW

1 2 3

Space profiles of no overlapping shock waves produced by several bunches

(1, 2, 3) of 7 TeV proton beam in Cu with the width of shock wave

SW
 = 10-7-10-6 cm and  the distance between two bunches L

TB 
 2.5x10-4cm

(L
TB 

= D
SW TB

) at shock wave velocity D
SW 

 104cm/s  and  
TB

 = 25 ns.

( LTB >> SW)
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During the life-time of electrical field ( tr ) the lattice ion with the effective

charge will receive the momentum

The electrical force F acting on a lattice ion (atom) due to the electrical

field is equal

F = eZ Emax
   (17)

p = F tr = eZ Emax tr
    (18)

and potential energy EP

eVZeE
P

101~~
max

÷

Criterion for point defect production in shock wave front

Ek= MV2(x)/2 > Ed

Ed is the threshold displaced energy: Ed = EP + EF ,    EF ~ 2-5 eV

MD2/2 – Ze _max > EF

  (19)

  (20)



 

 

 

 

 

 

Propagation of shock wave in cold (ideal) crystal lattice:

Energy barriers for atomic displacements

E Ed

D

Ed ~ 15 - 30 eV



E

X

Ed

Propagation of shock wave in heated (non ideal) crystal lattice:

D

Energy barriers for atomic displacements:

Ed ~ 4-10 eV



Effective Temperature and Defect Cluster

Production during Shock Wave Propagation

1. Temperature rise during shock wave

propagation.

Main Equations for Description of Shock Wave: 

Current of Energy:
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Here          is the  density of material;

V is the flow velocity of material;

H0=E0+PV0 is the thermal function of unit volume

E0 is the internal energy;

_ is the internal pressure;

V0 is the volume of material.



Thermal Current:

 

• k(_) is the thermal conductivity;

• _ is the temperature of material;

Energy of the unit volume:
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Equation (4) in the new coordinate system moving with the shock

wave velocity D (Y=X-Dt):

=+++++
y
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PVw
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w

y
)(

22
0

2

00

2

Here  w=dy/dt is the flow velocity of material in the new coordinate

system (V=W+D);

Main processes at different distances from center of shock wave

_) At  the flow velocity of material in laboratory coordinate system is

equal zero (w=-D) and equation (5) has the following form

( )=
y
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In laboratory coordinate system the equation (6) coincides with the

equation of thermal conductivity
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B) At y=0 the shock wave is described by the following relations:
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Index  «0» describes the physical values before the front of shock

wave and index  «1» behind the front of shock wave.

Taking into account the relations (8) from the equation (5) we get at  y=0:

0)( =
y

T
Tk

y

The solution of the CdVB equation for shock waves in the frame of

Thomas-Fermi-Dirac model has the following form

,
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4
sec)( 02
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S
+4W
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/9;
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Let us estimate the width 
V
 of distribution W(p). It is equal:
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Assuming that the thermal contribution of pressure and internal energy

more then the "cold" contribution the pressure P is written in the form

0
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Where E is the internal energy of volume V
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The distribution of atomic velocities in shock wave for two velocities of
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of shock waves D
01 

(D
01

 =1.030C) and D
02

 (D
02

 =1.045C) (D
02 

>D
01

) for Cu.



 

 

 

  
K(T), W cm-1 K-1

TM (V), K g cm3

Cu

 

 

300K-T
M

 

T
M

-2000K

 

T>2000K

K(T)=3.9+0.0013T-3T2x10-6+9.2x10-10 T3

 

K(T)=0.60+0.0011T-2.6x10-7T2

 

K(T)=2.1

TM=1356 8.93

Al

300K-T
M

 

T
M 

-T
V

 

T>T
V

K(T)=2.4

 

K(T)=0.63+3.3x10-4T

 

K(T)=1.5

TM=933

 

TV=2740

2.70

Ni
100K-T

M

 

T>T
M

K(T)=3.4-0.013T+2.2x10-5T2-1.5x10-8T3+3.6x10-12 T4

 

K(T)=0.50

TM=1726 8.91

Fe 100K-T
M

 

T>T
M

K(T)=1.24-0.0017T+8.8x10-7 T2 –1.3x10-10 T3

 

K(T)=0.33

TM=1809 7.86

 

Table 1
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Temperature profile in the front of shock wave propagating

in Cu with the different velocities:

D1=10 km/sec, D2 =12 km/sec and D3 =15 km/sec.
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Temperature profile in the front of shock wave

propagating in Al with the different velocities:

D1=10 km/sec and D2 =12 km/sec.
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Temperature profile in the front of shock wave

propagating in Fe with the different velocities:

D1=10 km/sec and D2 =12 km/sec.
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Temperature profile in the front of shock wave

propagating in Ni with the different velocities:

D1=10 km/sec and D2 =12 km/sec.
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D
T(x,t)

x

         T0

D

LTB

T(x,t)

x

       T0

D

LTB

D

_ ~ (__T)1/2

LTB= DSW_T

  L = _  at :

 t < _*=

_/D2

At  t < _*= _/D2 the thermal wave  will overcome the shock wave: _ > L

At  t > _*= _/D2 the shock wave  will overcome the thermal wave: L > _
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_ ~ 1cm2/s ,

D ~ 104 –105 cm/s ,

_*= 10-8-10-10s

Cu:



Numerical modeling of microstructure change in collimator

materials using molecular dynamic simulations during

shock wave propagation in copper.

Molecular dynamic method of simulation of shock wave

propagation in Cu.

•The sample is constructed from 8000 atoms of copper arranged in FCC lattice

having the form of rectangular parallelepiped 10a x 10a x 20a, (where a is the

lattice constant).

•The periodic boundary conditions are applied along X and Y directions

corresponding to short sides of crystal. On the surfaces Z
0
=0 and Z

max
=20a the

mirror boundary conditions with rigid walls are used. It allows to investigate the

reflection of shock wave from the surface.

•In the present numerical calculations the well known Verlet algorithm is used for

the integration of motion equations for moving atoms. The interactions between

moving atoms in Cu are described by the so-called ‘Embedded Atom Potential’.

•All necessary numerical data for the calculations are taken from the internet:

http://www.ims.uconn.edu/centers/simul/pot/ucnn/cu.txt
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The changes of initial glass-like microstructure obtained by fast cooling of

copper crystal lattice from 3000K up to 300K after the penetrating of shock

wave having the average ion velocity behind shock wave V=20 000 cm/s.
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The dependence of  number of displaced atoms as a function of average ion

velocity behind shock wave in the initial glass-like microstructure obtained

by fast cooling of copper crystal lattice from 3000K up to 300K.

50 100 150 200 250 300
0

10

20

30

40

50

60

70

80

10 December, CERN, Geneva



The changes of heated crystal-like microstructure at the temperature

T
ini

=800K after the penetraiting of shock wave having the average ion

velocity behind shock wave V=200m/s. The circles show the displaced atoms.
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The effect of previous shear deformation on the changes of heated crystal-like

microstructure at the temperature T
ini

=600K after the penetrating of shock

wave having the average ion velocity behind shock wave V=200m/s in Cu . The

circles show the displaced atoms.

x10e-7 cm, Yx10e-7 cm, Xx10e-7 cm, Z
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Microstructure of displaced atoms produced by the shock wave initiated by

internal electrical field  70 V/A at the temperature T=300 K and at the

simulation time t = 2.1 ps.
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The results of numerical simulations for the spatial distribution of displaced

atoms produced in proton beam area by the shock wave initiated by an

internal electrical field 70 V/A at the temperature T=300K at the three

different simulation times: t1 =0.3 ps, t2 = 0.6 ps and t3 = 2.1 ps.
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Formation of channel produced by the shock wave initiated by an internal

electrical field Em = 120V/A in proton beam area of Cu crystal lattice at the

temperature T=300 K at the simulation time t =0.3 ps.
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The results of numerical simulations for the spatial distribution of displaced

atoms produced in proton beam area by the shock wave initiated by an

internal electrical field 120 V/A at the temperature T=300K at the three

different simulation times: t1 =0.3 ps, t2 = 0.6 ps and t3 = 2.1 ps.

t = 0.3 ps t = 0.6 ps t = 2.1 ps
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Summary

• Propagation of shock wave can result in an additional strong temperature rise
on the front of shock wave during the propagation of it.

• The maximum temperature on the front of shock wave in materials:Cu, Al, Ni,
Fe is increased with the increasing of shock wave velocity.

• The molecular dynamic simulations of microstructure change in Cu during
shock wave propagation show that shock waves can produce stable point defects
(displaced  atoms).

• The numerical simulations of shock wave propagation show that comparing with
the propagation of shock waves in an ideal crystal lattice (low  temperatures) in
thermal heated crystal lattice the additional displaced atoms (point defects:
vacancies and interstitials) are generated.

• The numerical simulations of microstructure change demonstrate that atoms in
the amorphous non-ideal crystal lattice can remove on some distances during
shock wave propagation (“shock wave induced diffusivity”).

• The concentration of produced displaced atoms during shock wave propagation
is increased with shock wave velocity.



Distribution profile of stopped electrons in copper per one

7 TeV proton as a function of the depth into target and

the radial coordinate
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Distribution profile of stopped electrons in graphite

per one 7 TeV proton as a function of the depth into

target and the radial coordinate
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Distribution profiles of stopped hydrogen and helium atoms in

copper per one 7 TeV proton as a function of the depth into

target and the radial coordinate.
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Distribution profiles of stopped hydrogen and helium atoms in

graphite per one 7 TeV proton as a function of the depth into

target and the radial coordinate.
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Neutron  energy spectrum per one 7 TeV proton in copper on

the several penetration depths of proton.
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Neutron  energy spectrum per one 7 TeV proton in graphite

on the several penetration depths of proton.
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