TDI settings and protection

TDI: protects LHC from miskicked injected beam (setting up, timing errors, kick setting errors, MKI failure). In position during injection process only.
TDI jaws set around injected beam
Setting the TDI

• Find the axis of the circulating beam with pilot bunches
 – Measure the beam position with BPMs?
 – Measure the losses with the TDI jaws and BLMs??

• Set the jaws symmetrically about this position

• Inject the full batch…

• Consider MKI flashover failure (worst case)
In a perfect world...

...the TDI can be positioned nicely between the edge of the halo and the aperture
Unfortunately, (as we all know) the world is not perfect.

- plus random errors on the injected beam position / angle (0.2 σ_y)
- plus optics errors changing the phase advance from MKI to TDI ($\leq 20^\circ$)
2 TCLIs per IP at 360±20° from TDI foreseen to protect against MKI-TDI phase errors – but now location at +20° next to Q7 is impossible…
So… do we need 2, or 1, or even 0 TCLIs?

- Checked protection afforded by TDI **ONLY** with the ‘realistic’ errors

- Also checked protection afforded by TDI plus **ONE** TCLI at 360° from TDI
 - Some hope since TCLI 1m Cu with better precision

- Also checked protection afforded by TDI plus **TWO** TCLIs at 360±20° from TDI
Checked particles outside aperture for these errors, by scanning MKI kick to obtain highest transmission…

<table>
<thead>
<tr>
<th>Assumed errors:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Injection error ±0.2 σ</td>
</tr>
<tr>
<td>MKI-TDI phase error ±0-20°</td>
</tr>
<tr>
<td>Orbit – TDI/TCLI precision ±0.1mm (±0.17 σ)</td>
</tr>
<tr>
<td>TDI mechanical error ±0.2mm (±0.33 σ)</td>
</tr>
<tr>
<td>TCLI mechanical error ±0.075mm (±0.13 σ)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Other assumptions</th>
</tr>
</thead>
<tbody>
<tr>
<td>288 x 1.15 x 10^{11} p+</td>
</tr>
<tr>
<td>Gaussian beam in Y, Y’</td>
</tr>
<tr>
<td>Extent of secondary halo: 7.88 σ</td>
</tr>
<tr>
<td>Vertical aperture limit: 8.2 σ</td>
</tr>
<tr>
<td>Damage limit 2% of full batch</td>
</tr>
</tbody>
</table>
Regions where beam outside 8.2 σ exceeds damage limit (2% of total) as a function of MKI kick and TDI advance, for 0, 10 & 20 degree MKI-TDI phase errors.

TDI only

TDI with TCLI at 360°

TDI with 2xTCLI at 360±20°

Note: the TDI NOMINAL position (i.e. the ‘setting’) is 0.5 σ larger.
What does this mean in terms of likelihood for damage?

- Assume 1 MKI flashover per 8 magnets per year (expected rate extrapolated from measurement on 1 prototype magnet)
- 1.09 σ deflection per MKI cell ($2 \times I_{\text{nom}}$)
- 33 cells per MKI magnet
- 2 dangerous kick regions (grazing upper or lower TDI jaw)
Expected dangerous events per year (total for the 2 injections) as a function of TDI/TCLI setting, for 0, 10 & 20 degree MKI-TDI phase errors

Note: the TDI NOMINAL position (i.e. the ‘setting’) is 0.5 σ larger.
Zero TCLIs

If MKI-TDI phase error ≤ 10 degrees,
And TDI can be set at 7.7σ (i.e minimum position at 7.2σ)
Then risk of damage due to MKI flashover every 5 years without TCLIs.

One TCLI at 360° from TDI

If MKI-TDI phase error ≤ 20 degrees,
And TDI can be set at 7.7σ (i.e minimum position at 7.2σ)
Then risk damage due to MKI flashover every 20 years with one TCLI.

Two TCLIs at 360 ±20° from TDI

If MKI-TDI phase error ≤ 20 degrees,
And TDI can be set at 7.9σ (i.e minimum position at 7.4σ)
Then risk damage due to MKI flashover every 40 years with two TCLIs.

1. Always assume here that MKI-TCLI phase advance is perfect……but should also check for errors in TDI-TCLI phase advance. OB to provide an idea of expected errors.

2. Risk of damage to TCLI itself non-negligible… to be evaluated in similar way.
What about positions for TCLIs?

• Next to Q6 is OK (340 or 360°)

• Next to Q7 is out… (DFBX interference)

• Next to D1 (180 +20°)? But 2 beams in same chamber… full analysis needed for TDI / TCLI / TCDD / TCT

• 640 degrees…. into continuous cryostat. Ugly.

• So one TCLI is OK, but 2nd only fits neatly at D1…
So where do we go from here?

- Reserve (again!) space next to Q6 for one TCLI
- Investigate feasibility of having TDI advanced to ~7.2 σ
 - Expected particle load
 - Effect on collimation system
 - Effect on TDI (activation, heating)
 - Effect on insertion (quenches?)
- Investigate feasibility of combined TCLI / TCT at D1 (anyway similar study being done for TCDD / TCT)
- Check damage expectation to Cu TCLI under the same assumptions
- Obtain realistic estimate of expected optics errors (MKI-TDI-TCLI phase advances)
- Suggestions for improving positioning tolerances welcome
 - Any optimists out there?