Status of Collimator Transverse Impedance Measurements

F. Caspers, T. Kroyer, E. Métral, F. Roncarolo, B. Salvant

Collimation Working Group Meeting

Feb. 4 2008

1

Acknowledgments

•	Oliver Aberle	AT/ATB
•	Gianluigi Arduini	AB/ABP
•	Ralph Assmann	AB/ABP
•	Richard Beltron	AT/MTM
•	Magnus Bjork	AB/CO
•	Antoine Boucherie	AB/RF
•	Enrico Bravin	AB/BI
•	Ray Brown	AB/ABP
•	Stéphane Burger	AB/BI
•	Jean-Paul Burnet	AB/PO
•	Marco Buzio	AT/MEI
•	Christian Carli	AB/ABP
•	Michel Chanel	AB/ABP
•	Régis Critin	AT/MEI
•	Didier Cornuet	AT/MEI
•	Serge Deleval	TS/CV
•	Denis Durey	AB/PO
•	Alan Findlay	AB/RF
•	Peter Galbraith	AT/MEI
•	Alexej Grudiev	AB/RF
•	Sara Lanzone	AB/APB
•	Hélène Mainaud-Durand	TS/SU
•	Simon Mataguez	AB/OP
•	Dominique Missiaen	TS/SU
•	Michele Morvillo	AB/RF
•	Juan García Perez	AT/MTM
•	Mathias Haase	AB/RF
•	Alain Hilaire	AT/MEL (now retired)
•	Philippe Lavanchy	AB/BI
•	I hibaut Lefevre	AB/BI
•	Christine Leroy-Jonckx	AB/CO
•		AB/CO
•	Stefano Redaelli	AB/OP
•		AB/RF
•	Olivier Sebastia	AB/CO
•	Javier Serrano	
•		AI/MEI
•	I homas Zickler	AT/MCS

For their help, support and advice in setting up the experiment !

- Context
- Objectives
- Methods and Results
- Outlook and Perspectives

Context (1/2)

• Transverse impedance of LHC has to be minimized to prevent the onset of instabilities (especially the real part)

Total transverse impedance budget for LHC:

$$Z_{\perp} = 100 \,\mathrm{M}\Omega/\mathrm{m}$$

 At low frequencies (f<1 MHz), impedance measurements and simulations are more difficult to perform.

• Classical thick wall theory predicts :

$$Z_{\perp}(f) \propto \frac{1}{\sqrt{f}}$$

and for one collimator

 $e[Z_{\perp}(8 \,\text{kHz})] > 100 \,\text{M}\Omega/\text{m}$

• But, using analytical calculations with less approximations...

Context (2/2)

Can we believe newer theories from Zotter/Métral and Burov/Lebedev?

- Context
- Objectives
- Methods and Results
- Outlook and Perspectives

Objectives for Collimation Working Group

- Assess the transverse impedance of collimators at low frequencies with simulation and/or measurements
- Can the LHC beam be stable with collimators?
- Support the design for phase II collimation system

This presentation is an update, studies are still ongoing

- Context
- Objectives
- Methods and Results
 - Theory
 - Simulations
 - Measurement
- Outlook and Perspectives

Theory

- Cylindrical monolayer pipe
- Resistive Wall impedance
- Variables:
 - b : half gap of the beam pipe
 - d: thickness of the beam pipe
 - $-\rho$: resistivity of the beam pipe

Copper (
$$\rho = 1.7E-8$$
) f[Hz]
Graphite ($\rho = 1.3E-5$)

- Context
- Objectives
- Methods and Results
 - Theory
 - Simulations
 - Measurement
- Outlook and Perspectives

FEA Simulations

Tom's presentation at the LCU meeting on 03/12/2007

Low Frequency Transverse Impedance Simulations of Collimators - Preliminary Results

Tom Kroyer, CERN

Thanks to Benoit Salvant, Fritz Caspers, Alexej Grudiev and Elias Metral for inspiring discussions

LCU, 3. December 2007

- Context
- Objectives
- Methods
 - Theory
 - Simulations
 - Measurement
- Outlook and Perspectives

Bench Measurements : probe coil method

 Nassibian and Sacherer (Nucl. Instrum. Methods 159 (1979) 21-7): <u>Transverse beam impedance related to the impedance of a loop</u>

For a strongly coupled coil of N turns and width Δ :

$$Z_{trans} = \frac{c}{\omega} \frac{Z_{coil}}{N^2 \Delta^2}$$

- Where
 - The Electric field is neglected in the Wake force calculation
 - $-\Delta$ is the width of the coil
- Need to use a reference of the same geometry to suppress the space charge impedance and to try to avoid unwanted effects:

$$Z_{trans}^{Graphite} = \frac{c}{\omega} \frac{Z_{coil}^{Graphite} - Z_{coil}^{Reference}}{N^2 \Delta^2}$$

F.Caspers, A.Mostacci, L.Vos <u>http://lhcp.web.cern.ch/lhcp/LCC/LCC_2002-01.htm#main3a</u> F.Caspers, A.Mostacci, U.Iriso **Bench Measurements of Low Frequency Transverse Impedance**, CERN-AB-2003-051-RF 13

Bench Measurements : Copper as reference?

- Ideally, need a perfect conductor for reference, however:
- Analytical calculations:

Copper ($\rho = 1.7E-8$) Graphite ($\rho = 1.3E-5$)

$$\Delta Z_{trans} = \frac{c}{\omega} \frac{Z_{coil}^{Graphite} - Z_{coil}^{Copper}}{N^2 \Delta^2}$$

• So, at low frequencies (f < 0.1 MHz),

• Therefore, in the absence of adequate reference, we keep ΔZ trans

Bench Measurements: instruments

• 2 different instruments were used:

LCRmeter (20 Hz \rightarrow 2 MHz)

Bench Measurements: choosing the instrument

Therefore, in these conditions, LCRmeter is less noisy than the VNA.

Thin coils to measure small gaps \rightarrow issue with **mechanical stability** → small coil width → small signal

More turns

- \rightarrow higher signal
- → but also lower resonance of the coil

Bench Measurements : Coils

• Example of measurement of $\Delta Z_{trans} = Z_{trans}^{Graphite} - Z_{trans}^{Copper} = \frac{c}{\omega} \frac{Z_{coil}^{Graphite} - Z_{coil}^{Copper}}{N^2 \Lambda^2}$

Bench Measurement drift: impact of temperature

Observation of the drift of the impedance at 1 kHz with time

• Observation of the drift of temperature in a temperature controlled room (Bldg

Bench Measurement drift: impact of temperature

- Does this drift matter? Unfortunately, it does...
- Continuous measurements (every 10 minutes) at 1 kHz, in the AT/MEI magnet measurement room (Bldg 867 temperature controlled at +/- 1°C)

Therefore, need for a room with much tighter temperature regulation!!! → PS magnet 101 reference room

Bench Measurements: planning

- 1st step
 - Measurement of the impedance of small plates (15 cm * 10 cm * 1 cm)
- 2nd step
 - Measurement of the impedance of collimator jaws (120 cm * 10 cm * 2.5 cm)
- 3rd step
 - Measurements of the impedance of a full collimator

Bench Measurements: 1) small plates

• Measurement of the impedance of small plates (15 cm * 10 cm * 1 cm)

Bench Measurements: 1) small plates

• Measurement of the impedance of small plates (15 cm * 10 cm * 1 cm)

Temperature was not controlled at the time...

...actually the setup stood rigth next to the window

Bench Measurements: 2) collimator jaws

• Measurement of the impedance of collimator jaws (120 cm * 10 cm * 2.5 cm)

Bench Measurements: 2) collimator jaws

• Measurement of the impedance of collimator jaws (120 cm * 10 cm * 4 cm) borrowed from Oliver Aberle (graphite used for TCDI, copper are spare)

Bench Measurements: 2) collimator jaws

• Bonus: Quick and dirty scan in half gap performed on Friday 01/02/08 evening. Temperature was controlled but the alignment was not perfect.

Bench Measurements: 3) full collimator

How could we measure it best on a full collimator?

- Gap is so small, that touching the surface is unavoidable.
- Thin long coil easily bends when not vertical \rightarrow need for a horizontal collimator
- Being able to insert the coil from above would be of great help, and would prevent scratches on the collimator
- Controlled temperature is important to compare to the reference
- Which reference? Copper jaws ? Air?

- Context
- Objectives
- Methods
 - Theory
 - Simulations
 - Measurement
- Outlook and Perspectives

Outlook and perspectives

- Agreement between Zotter-Burov-Lebedev theory, measurement and simulations for the low frequency part of the real transverse impedance
- For a 1.2 m long collimator, 2 mm half gap, Re[Zy(f = 8 kHz)] ~ 400 k Ω /m
- Still some work remains to improve accuracy, and reduce alignment errors
- The impedance Re(Z(f)) has a maximum that depends on the material and the thickness

 \rightarrow opportunity to use composite materials to optimise the impedance in different frequency ranges

• Let's measure the collimator!

