A Three Stage Cleaning System with Improved Robustness and Impedance for the LHC

**Collimation Working Group** 

R. Assmann AB/ABP

1

### Most relevant cases of beam loss:



Protect against: Beam dump irregularities at 7 TeV (horizontal) Losses from low lifetime at 7 TeV (any plane, any collimator) Injection oscillations (mainly vertical, selected collimator?)

CWG 14.3.03

## Idea of a three stage system:

Relies on adding tertiary collimator/triplet absorbers at triplets (before D1):

Good for machine protection (RS) Good for cleaning efficiency (RA)  $\rightarrow$  Use for relaxing tolerances and impedance...

#### Idea carried further to a three stage system:

| At 450 GeV: | Use short primary and long secondary collimators in IR3/7.<br>No change of philosophy: 6/7 $\sigma$ (protect downstream arc + DS)<br>No change of required robustness (use C for all collimators<br>if we cannot avoid impact of one injected batch?) |  |  |  |  |
|-------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| At 7 TeV:   | Use <b>short primary</b> (1 cm C) at 6 $\sigma$ . Will be very robust!<br>Use <b>long secondaries</b> (1 m C) at 10 $\sigma$ . In shadow of TCDQ.<br>Use <b>long tertiaries</b> (1m C) at 10 $\sigma$ to clean 10 -13 $\sigma$ secondary halo         |  |  |  |  |
|             | Note: Ignoring cases at 450 GeV, we could go to short                                                                                                                                                                                                 |  |  |  |  |

Note: Ignoring cases at 450 GeV, we could go to short secondaries and tertiaries, made out of Cu (no impedance problem). **Hybrid system:** 0.5 m C (inj) and 0.5 m Cu (top)?

Ideally: Put 4 primaries at 0, 45, 90, 135 degrees.

RA



#### A robust, low impedance, high efficiency 3-stage system:

Primaries almost indestructible, robust C secondaries, local cleaning at triplets, relaxed tolerances orbit and beta beat, good efficiency.

System fully based on C: Factor 3-4 improvement in impedance!



#### A robust, low impedance, high efficiency, 3-stage hybrid system:

Primaries almost indestructible, robust C secondaries for injection (reduced cleaning efficiency), low impedance secondaries at 7 TeV (in shadow of TCDQ), local cleaning at triplets, relaxed tolerances orbit and beta beat, good efficiency. Same length as C system. Resistive impedance budget (20-30%) might be respected.

### **Cleaning efficiency with short primaries:**

20 cm C:  $2.9 \times 10^{-4}$  (>10  $\sigma$ )

1 cm C:  $7.8 \times 10^{-4}$  (>10 o)

Cleaning efficiency is reduced factor 2-3!

However: We might be able to accept this (goal is  $1 \times 10^{-3}$ ). Collimators are much more robust. No adjustment of angle beam-jaw needed. Particles will anyway see only a small part of jaw.

More studies required for optimal length (long tracking studies).





# Efficiency with secondaries at 10 $\sigma$ (in shadow of TCDQ):

Significant operational gain with larger retraction!

Room until secondaries become primary collimators (quench):

| 1 $\sigma$ retraction: |                      |                     |               |
|------------------------|----------------------|---------------------|---------------|
| transient orbit        | change               | 1σ                  | 200 µm        |
| transient beta         | beat                 | 30 %                |               |
| 4 $\sigma$ retraction: |                      |                     |               |
| transient orbit        | change               | 4 σ                 | 800 μm        |
| transient beta beat    |                      | 170 %               |               |
| Tolerance is a         | fraction of these    | e values, e.g. 1/4. |               |
| Orbit:                 | <b>50</b> μ <b>m</b> | $\rightarrow$       | <b>200</b> μm |
| Beta beat:             | 8 %                  | $\rightarrow$       | 40 %          |

Much easier in operation! Much easier set-up! Much easier mechanical tolerances! *Details to be worked out!* 

# **Conclusion:**

- A three stage system is proposed.
- It involves installation of tertiary collimators before the triplets (50 cm Cu?).
- Primaries at 6  $\sigma$  are short (~ cm), almost indestructible, and uncritical for set-up.
- Secondaries can be put to 10  $\sigma$  at 7 TeV, into the shadow of the TCDQ.
- A full C based system would reduce impedance by a factor 3-4, while offering maximum robustness.
- A hybrid system C/Cu would offer full robustness at injection and very low impedance at top energy (taking advantage of protection by the TCDQ). Nice possibilities for optimization (robustness vs impedance vs efficiency vs vacuum).
- A three stage system would be much easier for set-up, operation, and mechanical tolerances. Win factor 4-5 in tolerances!
- Full flexibility of the LHC is maintained (tunes,  $\beta^*$ , ...).
- Triplet absorbers are also required for machine protection (RS, MPWG).

If no show-stopper is discovered and if there is support for this idea:

Work out details (lengths, materials, settings, ...).

Check possibilities for tertiary collimators at triplet/D1.

**Determine whether Cu can be used in routine operation (low lifetimes)!** 

Get feedback from LTC (next Wednesday).

Get feedback from Collimator Project Meeting (engineering constraints).

Propose to LTC, LHC Project Leader for a decision.

Impedance must be understood in any case!

. . .

## Other possibilities to relax requirements:

| Origin                            | 450             | GeV            | 7 7             | ГeV            |                     | 4e+012      |          |
|-----------------------------------|-----------------|----------------|-----------------|----------------|---------------------|-------------|----------|
|                                   | $\Delta T [ns]$ | $T_{sum}$ [ns] | $\Delta T [ns]$ | $T_{sum}$ [ns] |                     | 3.5e+012    |          |
| Erratic switch No. 1              | 0               | 0              | 0               | 0              | (×                  | 0010        | Ē        |
| Re-triggering pick-up 10 V signal | 400             | 400            | 200             | 200            | 00                  | 3e+012      | Ē        |
| Cable delay                       | 180             | 580            | 180             | 380            | $\overline{\nabla}$ | 2 5e+012    | <u> </u> |
| Trigger unit delay                | 120             | 700            | 120             | 500            | v<br>X              | 2.00 012    | Ē        |
| Cable delay + transformer delay   | 100             | 800            | 100             | 600            | A V                 | 2e+012      | -        |
| Turn delay GTO stack              | 400             | 1200           | 400             | 1000           | v<br>.×             | 1 501010    | Ē        |
| Operational margin                | 300             | 1500           | 300             | 1300           | (50                 | 1.5e+012    | Ē        |
|                                   | •               | •              | •               | •              |                     | 1 - 1 0 1 0 | F        |

#### 1. Shorten re-trigger time of dump (LHC PN 293)



# 2. Fix phase advance between dump and primaries (LHC PN 293)

|                                    | Beam 1          |                          |                 |                          |             |
|------------------------------------|-----------------|--------------------------|-----------------|--------------------------|-------------|
| Element                            | $\psi_x [2\pi]$ | $\psi_x - N\pi$ [degree] | $\psi_x [2\pi]$ | $\psi_x - N\pi$ [degree] |             |
| MKD kicker                         | 0.              | 0.                       | 0.              | 0.                       |             |
| TCDQ absorber                      | 0.266           | 95.8                     | 0.2653          | 95.5                     |             |
| Primary coll. ( $\beta$ -cleaning) | 7.457           | 164.7                    | 56.366          | 131.6                    | Optics V6.4 |

All beam should impact one primary horizontal collimator! Fix phase advance! Make short secondaries (injection?) Beam 2: Fix phase advance to beta and momentum cleaning or freeze setting of momentum collimators.

#### 3. Anti-kicker at the dump (BG et al)

#### 4. Use TCDQ as primary hor. collimator for betatron cleaning at 6 $\sigma$ (RS, BG).

- Idea: Remove dump failures from our list of requirements for LHC collimators. Injection case stays.
- Problems: One stage system has insufficient cleaning efficiency.

We do not win very much in impedance: 10 m long uncoated C jaw at 6  $\sigma$  will create strong resistive impedance. Win with square root of beta (sqrt(500/100) ~ 2.2). However, secondary collimators will remain at 7  $\sigma$  (triplet aperture).

Other collimators must remain robust for injection failures (no Al/Cu) and operation.