Collimation Efficiency Versus Collimation Depth

R. Assmann, SL/AP 5.11.2001

Problem: "Nominal" aperture studies (Primary: 7σ . Secondary: 8.2 σ .)

> "Nominal" collimation studies (Primary: 6σ . Secondary: 7σ .)

Should we enforce consistency?

Remark: Secondary must protect machine aperture!

Simulation: Consider betatron cleaning system 20 collimators (4 primary, 16 secondary) 7 TeV Design emittance: 0.5 nm Design beta functions No imperfections for this study

Assume: Mechanical aperture at 10σ .

Assume: Mechanical aperture at 10 σ , but particles at amplitudes above 15 σ lost shortly after collimation section (warm).

Assume: Mechanical aperture at 8 σ .

Different minimum than for 10σ aperture!

Rule of thumb (ideal system, nominal σ 's):

Put primary collimator at (mechanical aperture -3σ) Put secondary collimator at (mechanical aperture -2σ)

Smaller collimation depth helps:

- Lower inefficiencies achievable (close to limit anyway).
- Smaller mechanical apertures can be protected.
- More insensitive positioning of secondary collimators.
- Larger retraction of secondaries relaxes some tolerances.

What limits minimum collimator opening:

- Don't cut into beam core $(3.5-4 \sigma)$.
- Beam σ can be larger than nominal $\sigma!$ (emittance blow-up)

Example:

Protect aperture at 10 σ (nominal).

Put collimators at 7 σ (primary) and 8 σ (secondary), nominal.

Emittance ~ 60 % larger than design value.

Collimators sit at ~ 5 σ and ~ 6 σ (real sigma).

Conclusion:

Not clear to me whether we should define "nominal" collimation depth.

- Instead: Adjust collimators to the machine condition.
- In particular: Collimators follow the machine aperture.
- Trivial: Keep mechanical aperture as big as possible.
- Trade-off: Emittance Intensity