BLM for Collimation Issues and Measures

E.B. Holzer for the BLM team LHC Collimation WG 15. Feb. 2010

Noise and Offset

Important for availability (false dumps)

- Onset of problem detected early by about daily checks on offset and noise for each channel, cause can be identified (cable noise, card problem, ...)
- Cables had been exchanged (up to 800 m), noise reduction: factor 2
- Next shut-down: install single pair shielded cables, noise reduction: > factor 5
- Development of kGy radiation hard ASIC readout (PhD Giuseppe Venturini, ≈4 years): avoid long cables

Example mean offset level right of IP3

- Some bad channels in the DS have been repaired
- Long cables in LSS and DS lead to higher fluctuations

Chamonix 2010, Eva Barbara Holzer

0

Noise single channel frequency distribution over 9 hours, low noise short cable (left), high noise - long cable (right)

Max. noise frequency distribution, Ionization Chambers (IC) - left, Secondary Emission Monitors (SEM) - right

SEMs have a higher percentage of high noise

Max. noise above red line \rightarrow channel will be repaired

A SEM is always installed next to an IC, it is less sensitive by factor of 70.000

- □ Are the thresholds at higher energies still safely above the noise levels? → yes (analyzed IC 40 µs, 1.3 s and 84 s integration time window up to now)
- Data set of 10 days: 18.12.2009 25.12.2009 and 08.01.2010 15.01.2010

Known Limitations – Dynamic Range

SEM noise

- □ Spurious signal: insulation problem being corrected now
- □ High noise (≈2000 Gy/s for short integration time)
 - Ambiguity for short losses in the gap between IC and SEM dynamic range

Thresholds cannot be set in SEM

- Partial activation of beam abort functionality was not foreseen in electronics (thresholds partially in SEM and partially in IC)
 - □ Installation of additional capacitors to spread the signal over longer time
 - □ Depending on requirement: new monitor type, small IC, 30 times less sensitive than IC (installation during 2010), ≈56 monitors.

Threshold levels compared to dynamic range

- Problem reduces with higher energies and integration times
- No problem on W collimators

TCP and TCSG

LHC Collimation WG

Eva Barbara Holzer

TCP in IR7 – Andres Gomez Alonso

Illustration 1: Number of lost protons integrated from the beginning of the failure normalized to total number of circulating protons before the failure [4].

TCT and TCLA

LHC Collimation WG

Eva Barbara Holzer

Resistor-Capacitor Delay

Experience:

- LHC dump lines
- HERA and various IC response tests (thesis M. Stockner)
- Some of the SPS LHC collimator tests (thesis D. Kramer and T. Bohlen)

LHC Collimation WG

Eva Barbara Holzer

<u>System A</u> 1.3e13 p⁺ dumped on collimator, Left Jaw at -5 mm, Right Jaw out

PostMortem Card 1 20071112 07:56:18

18.2.2008

BLMI Space charge effect estimation ("signal saturation")

TCP in IP7

 Signal collected within 640µs

 IC on last collimator and IC 1.5-2m
afterwards (no element in between) show same signal

Tue Dec 1 22:17:12 2009

TCP in IP3

 Signal collected within 640µs

 IC on last collimator and IC 1.5-2m afterwards (no element in between) show very similar signal

TCP Thresholds with R-C Delay

- Add a capacitor and a resistor to the readout chain of ICs after (the last) TCP
 - Reduce the peak signal by a factor of 175
 - Increase length of the signal by 175 \rightarrow signal collected within 112 ms
 - For 1.3s integration time (logged every 1s) \rightarrow practically no difference
- Increase the upper end of the dynamic range by a factor of 175
- Thresholds would have to be recalculated
- 40µs 450 GeV threshold values:

TCP	Theoretical threshold [Gy/s]	Old thres. [Gy/s]	New thresh. [Gy/s]
IP3	~40'000	23	4'025
IP7	~2'000 (correction for ultrafast losses due to RD1.LR1 failure	23	4'025

Extrapolation to Higher Intensities

Preliminary results

- Assuming intensity increases, all other conditions unchanged
- G data sets analyzed (same data sets as presented in Evian by Ch. Bracco and W. Bartmann)
- At what intensity do we reach the loss threshold? Which are the most-critical elements?
- Collimation cleaning 450 GeV (1.3 s loss data compared to 84 s thresholds), scaled to nominal intensity
 - B1 and B1 longitudinal cleaning
 - B1 vertical and B2 horizontal cleaning
- Injection (40 μs loss data compared to 40 μs thresholds)
 - \Box B1 and B2, cleanest injections: SPS scraping, TCDI 6 σ hor. / 4.5 σ vert.

19800

17

19900

20200

DCUM [m]

signal ICs B2

thresholds ICs B2 thresholds ICs B1 signal ICs B1

*

20000

20100

<i>Most-Critical Elements</i> at nominal intensity 3E14	<i>Beam lifetime at threshold [minutes]</i>	
Beam 2 horizontal cleaning		
BLMEI.06R7.B1E10_TCLA.B6R7.B1	62 – 86	
BLMEI.06R7.B1E10_TCLA.A6R7.B1	26 – 37	
BLMQI.04 L6 .B2I10_MQY	18 – 24	
Beam 1 vertical cleaning		
BLMEI.05R7.B2I10_TCSG.B5R7.B2	1 – 1.5	

→ We need more beam tests and possibly simulation studies

- \rightarrow Re-define the protection philosophy
 - Ralph: non-local protection
 - Define failure scenarios, and protect by a combination of collimator interlocks (e.g. position) and BLM readings

Beam 2 horizontal:

- TCLA losses seem to be caused by "crosstalk" particle showers from B2
- Most critical cold element in IP6
- No limits from BLM dynamic range (all long integration time thresholds are within the dynamic range of the BLM system)

<i>Most-Critical Elements</i> at nominal intensity 3E14	<i>Beam lifetime at threshold [minutes]</i>	
Beam 1 longitudinal cleaning		
BLMEI.05L3.B1I10_TCSG.5L3.B1	13 – 18	
BLMEI.05R3.B1I10_TCLA.A5R3.B1	7 – 10	
BLMEI.08R3.B1I23_MBB	7 – 10	
Beam 2 longitudinal cleaning		
BLMEI.08R3.B2I30_MBA	22 – 31	
BLMEI.05R3.B2E10_TCSG.5R3.B2	7 – 10	
BLMEI.05L3.B2E10_ TCLA.A5L3.B2	5 – 7	

- B2: most critical element is a cold dipole
- Losses localized: mostcritical elements in IP3
- Most-critical TCSG and TCLA correspond for B1 and B2, MBs are next to each other
- No limits from BLM dynamic range (all long integration time thresholds are within .esh .ne dynamic i BLM system) Y PRELIMINARY the dynamic range of the

SPS scraping, TCDI 6 σ hor. / 4.5 σ vert., Beam 2, 2e10 p

Injection with SPS scraping

Most critical	Beam 1	Number of injected protons at threshold	nominal: 3E13
16% of 38 most	t critical elements are cold magnets		2010: 4E12
Collimator	BLMEI.06L7.B1E10_TCP.A6L7.B1	1.5E+11	2
Warm magnet	BLMEI.06L7.B1E10_MBW.B6L7	5.5E+11	44
Cold magnet	BLMQI.08L2.B1E30_MQML	6.7E+11	Ż
	Beam 2		11
50% of 30 mos	t critical elements are cold magnets		
Collimator	BLMEI.06R7.B2I10_TCP.C6R7.B2	3.4E+12	
Cold magnet	BLMEI.04R8.B2E10_MBXB	3.9E+12	Z L
Warm magnet	BLMEI.06R8.B2E10_MSIB	9.8E+12	ā

- Numerous elements (collimators, cold and warm magnets) yield similar limits for injected protons
- □ IC thresholds in warm elements limited by BLM dynamic range. But, losses at cold magnets about equally close to threshold (≈3 times below quench limit).
- $\Box \rightarrow$ injection losses need to be reduced further, scraping in the SPS seems crucial
- □ → possible to increase thresholds on primary and secondary collimators and warm magnets (additional capacitors, small IC) but not on cold elements

BLM Issues still to be checked

- Two issues discovered by Collimation team:
 - Noise right of IP3, seemingly correlated with losses in IP3
 - Spurious BLM signals (shift in offset level?) over big parts of the ring at the same time.

Changes 2010 with respect to November 2009

- Monitor factor for all TCxxx elements: 1
- Signal per proton, increase by factor 62: 0.54 aC/p → 33.6 aC/p (measured)
- Hardware on all installed TCxxx elements: no changes
- Monitors after (the last) TCP: R-C delay factor 175
 - Verify the signal and noise levels with the additional delay
 - Start-up: disconnect from BIS
 - Later: recalculate thresholds taking delay into account, algorithm:
 - Delta loss?
 - Loss duration = integration time?
- Test first Small IC next to BLMEI.06R7.B2I20_TCSG.A6R7.B2
- Propose: disconnect from BIS all monitors which are already installed for future TCxxx elements
- Connect to BIS TCAPA? (thresholds?)

Modifications on Longer Time Scale

- Noise (lower end of dynamic range)
 - Next shut-down: install single pair shielded cables, noise reduction: > factor 5
 - Development of kGy radiation hard ASIC readout (PhD Giuseppe Venturini, ~ 4 years): avoid long cables
- High end of dynamic range
 - Small IC and/or RC-delays
- "Cross talk" between beams
 - Work out a new protection scheme
 - Thresholds defined by 0.1 of destruction limit
 - Ralph: non-local protection
 - Correlation of BLM signals BLM system upgrade
 - Define failure scenarios and protect by a combination of collimator interlocks (e.g. position) and BLM readings

Additional Slides

<u>System A</u> 1.3e13 p⁺ injection plateau, Left Jaw at 10mm, Right Jaw out, Dump @ 1.2s

Beam dump on Closed Jaws SEM to BLMI comparison 1.3 10¹³p⁺

Black line – signal not clipped $5^*\tau$ _filter = 350ms

D.Kramer

TCP in IR7 – Andres Gomez Alonso

Illustration 4: BLM thresholds on TCP collimator in IR7 expressed in dose, as a function of signal integration time. A dose of 10⁻¹² Gy per impinging proton is used.

LHC Collimation WG