LHC collimators

Mechanical point of view

- 1 Collimator number and types.
- 2 Parameters for technical specification.
- <u>3</u> Collimators in LHC tunnel.
- 4 Present status of collimator studies

G. Burtin 20-11-2001

1 Collimator number and types.

A total of 66 collimators, 1 or 2 moveable jaws, are repertoriated for:

<u>Momentum cleaning in IR3:</u>

1 primary (TCP: H plane) 200mm Al, Ti, or other light material jaws

Associated with

6 secondaries (TCS: H, S(kew), V plane) 500mm Cu jaws per beam.

Betatron cleaning in IR7:

<u>4 primaries</u> (TCP, H, S, V plane) 200mm Al, Ti, or other light material jaws Associated with

16 secondaries (TCS, 4xH, 4xS, 4xV plane) 500mm Cu jaws for per beam.

<u>Injection single pass cleaning:</u>

2 tertiaries (TCL, V plane) 1000mm Cu jaw(s) in IR2R for beam1 and in IR8L for beam2.

<u>High luminosity region protection:</u>

2 tertiaries (TCL, H plane) 1000mm Cu jaw(s) per beam in IR1 and in IR5

2 Parameters for technical specification.

_ Aperture limits:

- -1- Maximum: ϕ 48mm to be confirmed.
 - _ It defines the transition pieces length (~ 100mm), to avoid impedance perturbations, on both ends of the jaws.
- -2- Operating aperture at 7 TeV:
 - _ Hence the <u>primary</u> collimator jaws are closed at \pm 6 σ (σ col ~ 150 μ m) total aperture is ~ 1.8mm (<u>fig. 1</u>).

<u>Jaw positioning precision and quality:</u>

- -1- Jaw positioning:
 - _ No absolute positions are required: <u>only position wrt local beam position and size</u>.
 - _ Precision required in relative position: $\pm \delta x$, $\delta x \le 0.3 \sigma col$ (~ 50 μm).
 - _ Stepping increment: 2.5 μm expected, 5 μm in LEP.
 - _ Position repeatability: $< \frac{1}{2}$ step ($< 2 \mu m$ achieved in lab).
- -2- Jaw quality:
 - _ Flatness: $20 50 \,\mu\text{m}$ (120 μ m achieved in LEP with composite jaw: fig. 2).
 - _ Surface roughness: 1.6 μm high quality machining.
 - _ Tolerances in angle: ± 0.1 mrad.

fig. 2

-3- Error contribution (δx):

- _ Jaws positioning precision wrt external reference sockets fixed on the tank.
- _ Jaw motion (motor unit + mechanical driving) & control.
- _ Thermal expansion effects.

3 Collimator in LHC tunnel.

LHC environment (from integration layout):

- -1- Comfortable situation in general: fig. 3
- -2- Critical situation at some secondary collimators (located inside Quad section): fig.4

<u>fig. 3</u>

G. Burtin

8

UKL SIDE OF CRYOSIAI

<u>fig. 4</u>

Alignment parameters and precisions:

- \underline{Z} precision positioning is not critical (precision may be defined as ± 1 mm).
- _ Precision on X &Y positioning (of each Taylor ball) guarantees relative jaws position wrt local references (surrounding Quad or Dip)
- _Longitudinal tilt depends on precision on X or Y or both.
- _ Collimators stability inside LHC tunnel must also be considered (ground motion...).

4 Present status of collimator studies

- -1- A collimator model is being built to investigate:
 - _ Integration components.
 - _ Transition pieces and impedance measurements.
 - _ A "scale 1" collimator for integration studies in LHC (<u>fig. 5 & Picture1</u>).
- -2- Due to high radiation level around collimators (>10⁵ Gy/y):
 - _ Special components have to be selected.
 - _ Quick, precise and stable alignment mechanical system has to be provided.
 - _ A "plug and play" tank fixation will be studied (collimator failure).
- -3- Good vacuum properties are expected, but must be still specified by LHC/VAC.
- -4- Shielding and BLM configuration around collimators has to be compatible.

<u>fig. 5</u>

J. P. Bindi

Picture 1

G. Burtin