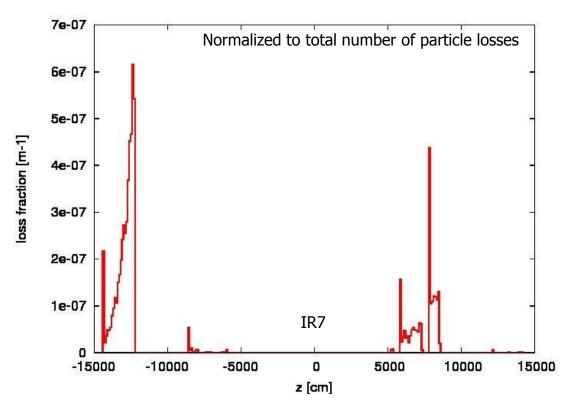
WARM (update) & COLD LOSSES @ 3.5 TeV

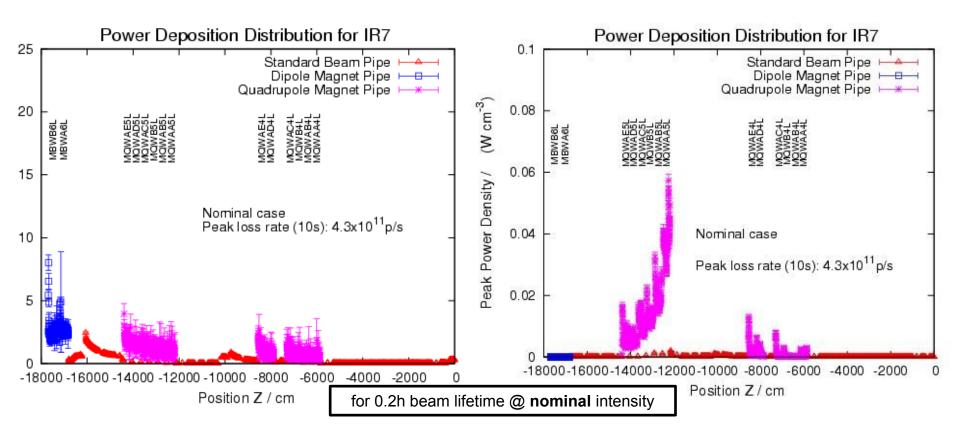
Framework

- Conclusions from the 108th CWG Nov. 2009 (F. Cerutti):
 - 3.5 TeV operation at nominal intensity represents a more favorable scenario than top energy as for energy deposition in the Point 7 betatron cleaning warm section:
 - Dose in MBW & MQW coils a factor 2-3 lower than at top energy
 - However, only showers from collimators were studied
 - Direct Proton Losses (DPL) potentially more important at 3.5 TeV
 - The (larger) TCLA aperture makes it worth to evaluate peak power density in the cold section SC magnets (single diffractive)
- => Outline of this presentation
 - Warm section: Peak dose in MQWs/MBWs coils due to DPL
 - Cold section: Peak power density in the DS coils


Cross checking limiting aperture of beam pipe

- Comparing FLUKA model to provided SixTrack aperture file:
 - **0.5 mm larger aperture** found in FLUKA for the **MQW**
 - FLUKA found to be consistent with the technical drawings* (Thus, SixTrack potentially on the conservative side)
 - For MBW both FLUKA and SixTrack models agree with the technical drawings*
 - TCAPC (same aperture as MQW) not included in the tracking simulations

- In FLUKA lost protons are loaded for transport using SixTrack loss coordinates
 - Interaction not forced at this point
 - Potentially impacting in beam pipe further downstream


*(i.e. LHCVCELQ0003-vAA.plt, LHCVCELW0001-v0.plt) Thanks to P.A. Thonet, D. Tommasini

Direct proton loss distribution

- Thanks to Adriana Rossi for providing loss distribution file
- Direct proton losses only make up a fraction of the total particle losses
 - ~ 1 / 1500 (used for normalization)

BEAM PIPE HEATING @ 3.5 TeV

Collimator shower losses

DPL

for 1.15 10¹⁶ lost protons 3.5 TeV (DPL)** 7 TeV* 3.5 TeV * Element [MGy] MBW.B6L7 3.3 1.7 0.9 0.3 MQWA.E5L7 0.0002 MQWA.A5L7 0.0013 MQWA.D4R7 0.0009 * Shower from collimators only ** Direct proton losses only

- For DPL highest load seen by last quadrupole of Q5 (MQWA.A5L7)
- Peak dose from DPL is negligible with respect to losses induced by collimator showers (two orders of magnitude lower)

Cold Section Peak Power Density

- The (larger) TCLA aperture possibly allows for more particles to reach and be lost in the cold section (single diffractive)
- How will this impact the peak power density in magnets with respect to 7 TeV?

New loss distribution file

- Flag indicating single diffractive interactions has now been included (Thanks to A. Rossi)
- Particle history may contain multiple events/interactions (SD)
- FLUKA should transport particle from first point of interaction
- Filter out consecutive interactions by the same particle

Analysis of loss distribution file

- From the total number of particles tracked:
 - 96 % are lost directly through inelastic interactions (IN) inside IR7
 - **3.4%** undergo **single diffractive (SD)** before lost through **IN** inside IR7 within the same turn (6.6% in FLUKA)
 - 0.2 % escape IR7, of these:
 - 33 % re-enter and are lost (inelastic) in IR7 in a different turn
 - 44 % have no further history (or are not lost through inelastic int.)
 - 23 % are lost outside IR7
 - Remaining ~0.4 % are directly lost outside IR7
- Loss event filtering:
 - **KEEP** the first interactions of a particle inside IR7, in any independent turn
 - **REMOVE** all consecutive interactions within the same turn.
 - Following this approach, approx. 3% of all events are removed (filtered)

Peak Power Deposition Cold Section

- NBOID NOID NBOID

	Peak power 3.5 TeV		Peak power 7 TeV*	
Magnet	[mW/cm ³]	error [%]	[mW/cm ³]	error [%]
MBB8R	5.2	12	0.2	72
MQ8R	3.4	9	1	64
MBA9R	7.4	9	0.6	24
MBB9R	5.0	12	1	12
MQ9R	2.3	9	1.9	23
MBA10R	1.0	17	0.4	25
MBA11R	4.3	14	0.9	23
MBB11R	3.1	11	1	16
MQ11R	0.8	13	5	32

MBAJOR

MBBA

rn0.9t

MBASH

MBAD

WBBBR

MOBA

for 0.2h beam lifetime (a) nominal intensity

Peak loss rate: 4.3 10¹¹ p/s

In FLUKA:

NBB119 HINDS STA OUS

- Probability of SD 2x higher (6.6%)
- Probability of escaping 4x lower
- Escaping particles 2x lower (0.1%)

 \Rightarrow Conservative side

 Peak power deposition higher at 3.5 TeV with respect to 7 TeV (quench limits ?)

* M. Santana, 17 July 2006

LCWG, April 26th 2010

Summary

- Warm section
 - **Direct proton losses negligible** compared to losses produced from collimator showers (~2 orders of magnitude lower)
 - Some discrepancies found in the limiting aperture of the beam pipe when comparing FLUKA and SixTrack models

- Cold section
 - single diffractive (6%) mainly contribute (90%) to losses in cold section
 - Operating 3.5 TeV for nominal intensity the peak power deposition in the cold section shows higher values with respect to the 7 TeV (most likely due to the larger aperture of the warm section collimators)