



# Updates on FLUKA simulations of TCDQ halo loads at IR6

FLUKA team & B. Goddard



|                                                                                                                                                | Where did we leave                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Last presentation<br>Analyzed cases<br>Normalization<br>Simulation results<br>TCLA implementation<br>Statistics<br>Conclusions<br>NEW onesided | <ul> <li>8<sup>th</sup> May 2006 presentation:</li> <li>Heat load on Q4 for nominal cleaning at injection and top energy;</li> <li>Horizontal and vertical losses considered, but horizontal slightly worse, so vertical neglected;</li> <li>Sensitivity to the magnetic field in the MCBY;</li> <li>Comparison with beam 1 in case of nominal cleaning&gt; factor 100 difference, due to asymmetry in the LHC collimation betatron cleaning system (IR7).</li> </ul> |
| L.Sarchiapone et al.,<br>5 <sup>th</sup> March 2007                                                                                            | Analyzed cases                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Last presentation<br>Analyzed cases<br>Normalization<br>Simulation results<br>TCLA implementation<br>Statistics<br>Conclusions<br>NEW onesided | <ul> <li>Cleaning without secondary collimators</li> <li>One sided cleaning</li> <li>Nominal cleaning (again) with an additional shielding for the Q4</li> </ul>                                                                                                                                                                                                                                                                                                      |





One side coll.

Conclusions

NEW onesided.

### Analyzed case: One sided collimation





L.Sarchiapone et al 5<sup>th</sup> March 2007





# Simulation results

|               | Curl I  |
|---------------|---------|
|               |         |
|               | :       |
|               |         |
| tion results  | 4       |
|               | -       |
| nplementation | 4 4 4 4 |
| 22            |         |

Conclusions

Simula

TCLA i

### NEW onesided..





# TCS retracted

|            | COIL MCBY           | COIL MQY             |
|------------|---------------------|----------------------|
|            | 7 T                 | eV                   |
| $J/cm^3/p$ | $1.3\cdot10^{-11}$  | $1.9 \cdot 10^{-11}$ |
| $mW/cm^3$  | 150.0               | 220.0                |
|            | 450 (               | GeV                  |
| $J/cm^3/p$ | $2.6\cdot 10^{-13}$ | $2.0 \cdot 10^{-13}$ |
| $mW/cm^3$  | 18.3                | 14.0                 |

|     | COIL MCBY           | COIL MQY            |
|-----|---------------------|---------------------|
|     | 7 T                 | eV                  |
| J/p | $4.7 \cdot 10^{-9}$ | $1.8 \cdot 10^{-8}$ |
| W   | 52.9                | 200.0               |

### One sided losses

#### Local Peak

|            | COIL MCBY            | COIL MQY             |  |
|------------|----------------------|----------------------|--|
|            | 7 TeV                |                      |  |
| $J/cm^3/p$ | $1.4 \cdot 10^{-11}$ | $1.9 \cdot 10^{-11}$ |  |
| $mW/cm^3$  | 5.3                  | 7.2                  |  |

To be compared to a typical **quench limit** of:

5 mW/cm<sup>3</sup> Localized

20 W Total

L.Sarchiapone et a. 5<sup>th</sup> March 2007



# **TCLA** implementation



Last presentation Analyzed cases No TCS One side coll. Normalization

## TCLA implementation

#### statistics

Conclusions

NEW onesided.

To reduce the local peak of energy on the magnets, an <u>absorber</u> has been implemented in the geometry. A 'test' simulation has been run with the <u>nominal cleaning</u> halo load.







TCLA<sub>halfgap</sub>= 10 s

0.6 cm @ 7 TeV 2.5 cm @ 450 GeV



L.Sarchiapone et al. 5<sup>th</sup> March 2007

|                                                     | TCLA implementation:                                   | - <b>-</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|-----------------------------------------------------|--------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                     |                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Last presentation                                   |                                                        | TCDM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Analyzed cases                                      |                                                        | Mask shifted<br>to imperent                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| No TCS                                              |                                                        | the TCLA<br>downstream                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| One side coll.                                      |                                                        | Revenue of the second sec |
| Normalization                                       |                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Simulation results                                  | Local Peak                                             | Total deposited power                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                     | COIL MCBY COIL MQY                                     | COIL MCBY COIL MQY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Results                                             | $\begin{array}{ c c c c c c c c c c c c c c c c c c c$ | $\frac{1}{J/p} = \frac{1.7 \cdot 10^{-9}}{1.7 \cdot 10^{-9}} = \frac{6.5 \cdot 10^{-9}}{6.5 \cdot 10^{-9}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Statistics                                          | $mW/cm^3$ 0.6 1.8                                      | W 0.28 1.07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                                     | Energy deposition on the MOY - Nom Cleaning            | Energy deposition on the TCLA - Nom Cleaning                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Conclusions                                         |                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                     |                                                        | 50 Copper                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| NEW onesided                                        |                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                     | e 0.1 - 1, , , , , , , , , , , , , , , , , ,           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                     | - 4<br>                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                     |                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                     | n**                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| L.Sarchiapone et al.,<br>5 <sup>th</sup> March 2007 | 0.04 2500 2550 2600 2650 2700 2750 2800<br>Z (cm)      | 2850 2100 2110 2120 2130 2140 2150 2160 2170 2180 2190 2200<br>Z (cm)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |







- > Asymmetry between beam 1 and beam 2 due to LHC layout
- Expected power load on the Q4.L6 coil with <u>nominal LHC cleaning</u> collimation 3.1 mW/cm<sup>3</sup> (less than factor 2 below the quench limit); <u>one sided cleaning</u> case 7.2 mW/cm<sup>3</sup>, about 50% higher than quench limit.
- TCDQ system for beam 2 risks being an operational limit once the LHC intensities are above about half nominal.
- The implementation of a TCLA absorber could reduce the power in the Q4 coils by a factor 2.
- In case of operation with <u>all secondary collimators retracted</u> the huge increase in the number of secondary halo protons impacting the TCDQ system limits this scheme to low intensities:
  - increase in number of protons <u>factor 76</u>
  - to respect the 5 mW/cm<sup>3</sup> limit in the Q4 coil, the total beam intensity must be limited to a factor of 50 below nominal (6 10<sup>12</sup> p<sup>+</sup>) corresponding to a possible operation with 156 bunches of 4 10<sup>10</sup> p<sup>+</sup>.

Conclusions

NEW onesided.





## Old input data

|                         | Protons absorbed   |          |       |      |      |
|-------------------------|--------------------|----------|-------|------|------|
|                         | Total LHC          | TCDQA    | TCDQB | TCSG | tot  |
|                         | FOR IDEA           | L MACHIN | E     |      |      |
| Side of <b>pos.</b> jaw | $2.24 \times 10^6$ | 544      | 0     | 364  | 908  |
| Side of neg. jaw        | $5.11\times 10^6$  | 3226     | 29    | 1006 | 4261 |
| 1                       | INCLUDING EN       | NERGY SP | READ  |      |      |
| Side of pos. jaw        | $3.68 \times 10^6$ | 845      | 1     | 492  | 1338 |
| Side of neg. jaw        | $4.32 \times 10^6$ | 2218     | 19    | 655  | 2892 |

#### mulation results

lausucs

Conclusions

# New (corrected) input data

|                         | Protons absorbed     |          |       |      |      |
|-------------------------|----------------------|----------|-------|------|------|
|                         | Total LHC            | TCDQA    | TCDQB | TCSG | tot  |
|                         | FOR IDEA             | L MACHIN | E     |      |      |
| Side of pos. jaw        | $2.24 \times 10^6$   | 154      | 0     | 364  | 518  |
| Side of <b>neg.</b> jaw | $5.11\times10^{6}$   | 1623     | 29    | 1005 | 2657 |
| 1                       | INCLUDING E          | NERGY SP | READ  |      |      |
| Side of pos. jaw        | $3.68 \times 10^6$   | 239      | 1     | 491  | 731  |
| Side of neg. jaw        | $4.32 \times 10^{6}$ | 1128     | 17    | 654  | 1799 |

#### NEW onesided

The old value of 7.2 mW/cm<sup>3</sup> was obtained scaling the results to the old input data - ideal machine side of negative jaw. In the new input data the 'fake' impacts seen by the collimators are removed.

| N | rosul | lte |
|---|-------|-----|
|   | 1C3U  | 113 |

|           |                         | COIL MCBY            | COIL MQY            |
|-----------|-------------------------|----------------------|---------------------|
|           |                         | 7 T                  | eV                  |
|           | $J/cm^3/p$              | $1.4 \cdot 10^{-11}$ | $1.9\cdot 10^{-11}$ |
|           | FOR IDEAL !             | MACHINE              |                     |
| multi/mag | Side of <b>pos.</b> jaw | 1.5                  | 2.0                 |
| mw/cm     | Side of <b>neg.</b> jaw | 3.3                  | 4.4                 |
|           | INCLUDING ENE           | RGY SPREAD           |                     |
| 117/3     | Side of <b>pos.</b> jaw | 1.2                  | 1.7                 |
| mvv/cm-   | Side of <b>neg.</b> jaw | 2.6                  | 3.5                 |

.Sarchiapone et al.