Expected Dose Rates around the Collimators What to Prepare for the upcoming LTC Meeting?

S. Roesler, M. Brugger

To Clarify

- What would you like to present at the LTC
 - Locations, Plots, Values, etc...
 - Materials, Comparison?
 - Detailed Geometries
- Time Constraints
 - Stefan and Markus will not be around in June, hence everything has to be prepared until the end of this month (Stefan already leaves in one week!)
- Studies already performed
- New studies necessary?
- Anything Else? Suggestions?

Dose Rates (simplified case)

- Geometry: 10m long tunnel section including (cylindrical approximation)
 - collimator (cylinder) with 7TeV pencil proton beam hitting the center of the front face
 - □ beam pipe downstream of collimator, copper, 2mm thick,
 - a 80 mm inner diameter
 - □ iron shield, cylindrical shell, 20cm thick (optional)
 - □ tunnel wall/floor/ceiling, cylindrical shell, 30cm thick
- collimator material length (cm) diameter (cm) CC 126 6 Be 135 6 Cu 50 6
- Loss assumption: 10¹⁶ protons/year, 180 days of continuous operation
- 1 hour, 1 day, 1 week, 1 month, 1 year of cooling
- Results: ambient dose equivalent rates anywhere within the 10m long tunnel section for each collimator material and two scenarios: with iron shield, w/o iron shield

e.g. Copper - Carbon

Dose Rate after one LHC year of operation: 7TeV p-beam, 1E16 protons/year (Cu Coll Shid: Full Geometry: via full simulation (both sources))

10¹⁶ protons/year,

180 days irradiation

Copper: Shielded - Unshielded

Diet

Carbon: Shielded - Unshielded

Carbon: Contribution from the Wall

Remanent Dose Rate (Max!)

		Collimator	Shielding (ins)	Shielding (out)
	Be:	20mSv/h	40mSv/h	3mSv/h
 Dominated by ⁷Be (53d) and ¹¹C (20.5min) 				
	C:	20mSv/h	40mSv/h	3mSv/h
 Dominated by ⁷Be (53d), ¹¹C (20.5min) 				
	Cu:	650mSv/h	100mSv/h	6mSv/h
Dominated by ⁴² K (12.4h), ⁴⁴ Sc (4h), ⁵⁶ Mn (2.6h), ⁶¹ Cu (3.3h), ⁶¹ Cu (12.7h)				
	W:	>1Sv/h	100mSv/h	10mSv/h

- Beam pipe (Copper):
 - Be: Peak: $20mSv/h \sim 2 10 mSv/h$ within the first 10 m downstream
 - C: Peak: $20mSv/h \sim 2-10 mSv/h$ within the first 10 m downstream
 - Cu: Peak: $300 \text{mSv/h} \sim 2 10 \text{mSv/h}$ within the first 10 m downstream
 - Dominated by ⁴²K (12.4h), ⁴⁴Sc (4h), ⁵⁶Mn (2.6h), ⁶¹Cu (3.3h), ⁶¹Cu (12.7h)

Dose rates (more realistic case)

- Geometry: 30m long tunnel section including (realistic geometry)
 - CC collimator, 252 cm length (~two former Cu-Coll), design as used for Vacuum study
 - □ quadrupole magnet at ~3.5 m downstream of the collimator
 - □ copper beam pipe, 2 mm thick, ~40 mm inner diameter
 - various flanges
 - □ iron shield, 20cm thick (optional)
 - tunnel wall/floor/ceiling
- Loss assumption: 10¹⁶ protons/year, 180 days of continuous operation
- 1 hour, 1 day, 1 week, 1 month, 1 year of cooling
- Results: ambient dose equivalent rates anywhere within the 30m long tunnel section for each collimator material and two scenarios: with iron shield, w/o iron shield

More Realistic Simulation

10¹⁶ protons/year,180 days irradiation1 day of cooling

1.0E+03

Dose Rate after one LHC year of operation: 1TeV p-beam, 1E16 part.

(Carbon Collimator Full Geometry: via full simulation)

