Controls for collimator MD

M. Jonker
Collimation working group 20061002

MD schedule:
W 42 (Oct 18th) 16 Hrs TT40
W 44 (Nov 2nd) 24 Hrs LSS5
W 45 (Nov 9th) 24 Hrs LSS5
W 46 (Nov 16th) 16 Hrs Reserve
Outline

LSS5 Test

- Collimator Hardware
- Controls Hardware
- Controls Software
- Dry runs
- Remains to be done

Note: TT40 Test will be based on same (moveable rack) system used for collimator tests and commissioning.
- Installation 16 October
- Logging facilities ok?
Collimator HW (LSS5)

LHC collimator prototype

- **Motors**
 - Lep type: (not strong enough if skew > 5 ~7 mm)?
 Option, replace two motors by final motors in case there is time for doing so. (RL)

- **Position sensors**
 - 4 resolvers (lep motors: demultiplied, LHC: direct)
 - 4 potentiometers (Not possible to replace with final LVDT’s)
 - 2 LVDT’s for gap measurement.

- **Thermometers**
 - 8 PT100 (note: twice as much as final collimator, but 2 of them are dead)
Controls Architecture

- **Control room software:**
 - Management of settings (LSA)
 - Preparation for ramp
 - Assistance in collimator tuning
 - Based on standard LSA components
 - Dedicated graphical interface for collimator control and tuning

- **Collimator supervisor:**
 - Fesa Gateway to Control Room Software
 - Synchronization of movements
 - Beam Based Alignment
 - Support building, VME
 - Takes action on position errors (FB)
 - Receives timing, send sync signals over fiber to low level (ramp & Alignment)
 - Environmental Supervision
 - Communication with BLM using UDP

- **Low level control systems**
 - Motor drive
 - Position readout and survey
 - Environment Survey
 - Down stairs, PLC/VME/PIX?
 - 3 distinct systems / combined?
Controls Hardware

Low Level:
- PXI system (National Instruments, Labview-RT)
 Compact and cost effective solution
 Dedicated ACQ card for position readout, dedicated FPGA card for control
- PLC for temperature readout

Supervisor Level:
- PC gateway with timing receiver (Runs Fesa Server of the CSS and the Low Level Fesa Server)

Control Room Level:
- Terminal Servers, CCC console

BLM system (for LHC BLM’s):
- 4 LHC type (ionisation chambers) 10 downstream from collimators
- New FPGA based hardware with special option for short transient history readout.
Controls Hardware

Communication

- PXI system – Fesa Server
 - Dim (aka DIP), Ethernet
- Low Level (Fesa) - CSS (Fesa)
 - CMW, Internal
- CSS – PXI Synchronisation:
 - optical fibers (CTRP – CTDPR – CTDET)
- CSS – CCC app
 - CMW, Ethernet
- CSS – BLM (synchronised readout for beam based optimisation)
 - Synchronisation: Coax (ctrp – ctrp)
 - Data: UDP, Ethernet
Controls Software

What functionality will be available for the beam test:

- Basic command-driven control of single collimators for SPS test, TT40 test and commissioning of transfer line collimators.
- No function driven controls (March 2007)
- No BLM based alignment (August 2007)
- For PLC readout, display and logging: use standard system provided by Ph. Gayet.
Dry runs

Objectives:
• Test and validate the system long enough before the actual MD’s
• Provide a test bed to further validate and develop the system

Agenda:
• Thu 28 Sep: Validate architecture and communication
• Thu 5 Oct: Repeat, detailed evaluation
• Thu 12 Oct: Test with BLM synch/comm, PLC readout
• Tue 17 Oct: Validate system with real PXI hardware. Test Logging.
• Thu 19 Oct: Validate system with collimator in the lab.
• Thu 26 Oct: Validate system in BA5
Dry run Thu 28 September

Important step:
- Validation of basic architecture and communication (PXI - CSS - CCC_application, all except PCI hardware modules which were emulated in PXI)

It worked!
- We are now sure that there are no show stoppers or last minute problems in the whole communication chain.
- We learned what and where to improve.
- We can use the current system to further develop.

However, embedded controls in hardware modules still to be validated.
To be done

• HW installation
 – Installation of gateway
 – Connection with BLM
 – Connection CSS with Low Level
 – and not to forget TT40
• Test low level control (FPGA) and acquisition modules
• Integrate BLM transient recording
• Acquisition by subscription instead of polling.
• CCC application running from standard consoles
• Integrate with LSA environment
• Test logging of measurements and controls
• Validate temperature readout, display and logging
• Define access to calibration constants (offset and mm/step) for system initialisation.