Controls for collimator MD M.Jonker Collimation working group 20061002

MD schedule:

W 42 (Oct 18th) 16 Hrs TT40
W 44 (Nov 2nd) 24 Hrs LSS5
W 45 (Nov 9th) 24 Hrs LSS5
W 46 (Nov 16th) 16 Hrs Reserve

Outline

LSS5 Test

Collimator Hardware Controls Hardware Controls Software Dry runs

Remains to be done

Note: TT40 Test will be based on same (moveable rack) system used for collimator tests and commissioning.

- Installation 16 October
- Logging facilities ok?

Collimator HW (LSS5)

LHC collimator prototype

- Motors
 - Lep type: (not strong enough if skew > 5 ~7 mm)?
 Option, replace two motors by final motors in case there is time for doing so. (RL)
- Position sensors
 - 4 resolvers (lep motors: demultiplied, LHC: direct)
 - 4 potentiometers (Not possible to replace with final LVDT's)
 - 2 LVDT's for gap measurement.

Thermometers

- 8 PT100 (note: twice as much as final collimator, but 2 of them are dead)

Controls Architecture

- Control room software:
 - Management of settings (LSA)
 - Preparation for ramp
 - Assistance in collimator tuning
 - Based on standard LSA components
 - Dedicated graphical interface for collimator control and tuning

Collimator supervisor:

- Fesa Gateway to Control Room Software
- Synchronization of movements
- Beam Based Alignment
- Support building, VME
- Takes action on position errors (FB)
- Receives timing, send sync signals over fiber to low level (ramp & Alignment)
- Environmental Supervision
- Communication with BLM using UDP

Low level control systems

- Motor drive
- Position readout and survey
- Environment Survey
- Down stairs, PLC/VME/PXI?
- 3 distinct systems / combined?

Controls Hardware

Low Level:

- PXI system (National Instruments, Labview-RT)
 Compact and cost effective solution
 Dedicated ACQ card for position readout, dedicated FPGA card for control
- PLC for temperature readout

Supervisor Level:

 PC gateway with timing receiver (Runs Fesa Server of the CSS and the Low Level Fesa Server)

Control Room Level:

- Terminal Servers, CCC console

BLM system (for LHC BLM's):

- 4 LHC type (ionisation chambers) 10 downstream from collimators
- New FPGA based hardware with special option for short transient history readout.

Controls Hardware

Communication

- PXI system Fesa Server
 - Dim (aka DIP), Ethernet
- Low Level (Fesa) CSS (Fesa)
 - CMW, Internal
- CSS PXI Synchronisation:
 - optical fibers (CTRP CTDPR CTDET)
- CSS CCC app
 - CMW, Ethernet
- CSS BLM (synchronised readout for beam based optimisation)
 - Synchronisation: Coax (ctrp ctrp)
 - Data: UDP, Ethernet

Controls Software

What functionality will be available for the beam test:

- Basic command-driven control of single collimators for SPS test, TT40 test and commissioning of transfer line collimators.
- No function driven controls (March 2007)
- No BLM based alignment (August 2007)
- For PLC readout, display and logging: use standard system provided by Ph.Gayet.

Dry runs

Objectives:

- Test and validate the system long enough before the actual MD's
- Provide a test bed to further validate and develop the system

Agenda:

- Thu 28 Sep: Validate architecture and communication
- Thu 5 Oct: Repeat, detailed evaluation
- Thu 12 Oct: Test with BLM synch/comm, PLC readout
- Tue 17 Oct: Validate system with real PXI hardware. Test Logging.
- Thu 19 Oct: Validate system with collimator in the lab.
- Thu 26 Oct: Validate system in BA5

Dry run Thu 28 September

Important step:

 Validation of basic architecture and communication (PXI - CSS -CCC_application, all except PCI hardware modules which were emulated in PXI)

It worked!

- We are now sure that there are no show stoppers or last minute problems in the whole communication chain.
- We learned what and where to improve.
- We can use the current system to further develop.

However, embedded controls in hardware modules still to be validated.

To be done

- HW installation
 - Installation of gateway
 - Connection with BLM
 - Connection CSS with Low Level
 - and not to forget TT40
- Test low level control (FPGA) and acquisition modules
- Integrate BLM transient recording
- Acquisition by subscription instead of polling.
- CCC application running from standard consoles
- Integrate with LSA environment
- Test logging of measurements and controls
- Validate temperature readout, display and logging
- Define access to calibration constants (offset and mm/step) for system initialisation.