Status of energy deposition studies at IR7

Collimation Meeting
20-03-2006

M. Santana, M. Magistris, A. Ferrari, V. Vlachoudis
Outline

• Summary of past activities & results
• Simulation of the cold arc under new conditions
 - Active absorbers on
 - Tertiary halo loss component
 - Case without secondary collimators
 - Vertical beam losses
 - Injection (pending)
• Simulations of doses in warm magnets, new conditions
 - Vertical beam losses
 - Dose in the pipes
 - Correction of position (pending)
• BLM's response
 - Cross-Talk
 - Individual detection spectra
Summary of past activities 1/2

cold magnets: active absorbers

- 20 cm long TCP active jaws
- No tertiary halo
- No passive absorbers
- Horizontal beam losses at 7 TeV
- 12 min accident scenario
Summary of past activities 2/2

Warm magnets: passive absorbers

Beam 1 (hori)

- TCLPA1 L.B1
 \[s = -17803 \text{ cm} \]
 \[100 \text{ cm W} \]

- TCLPA2 L.B1
 \[s = -17255 \text{ cm} \]
 \[20 \text{ cm W} \]

- TCSG.A6L7.B1
- MBW.B6L7
- MBW.A6L7

- MQW.A5L7
- MQW.AE
- MQW.AD

- TCLPA3 L.B1
 \[s = -14436 \text{ cm} \]
 \[60 \text{ cm W} \]

No abs. with abs. absorber

- 60 cm long TCP
- Horizontal beam losses
- 7 TeV/beam
New simulation of the cold arc
Active absorbers + Tertiary halo + 60 cm TCP jaws + vert.

REMARKS:
- Hottest element MQ10
- Tertiary halo contributes 50% to the first elements
- Vertical losses less harmful
- Hottest element MQ11

Pending: Injection
New simulation of the warm magnets
vertical vs. horizontal beam loss scenario

Beam 1 (vert)

TCLAP.1L1B1 TCLAP.2L1B1
s = -17803 cm s = -17255 cm
100 cm W 20 cm W

TCLAP.3L1B1
s = -14436 cm
60 cm W

MB/MQ... hori vert
TCLA

Energy [kW]

Peak dose [MGy/y]
New simulation of the warm magnets
dose in the pipes (horizontal loss scenario)

The heating film that wraps the pipes inside the MBW/MQW could be damaged...?
Simulation of Beam Loss monitors 1/3

Introduction

- BLM blocks after each collimator (TCP/TCS), below the beam line plane
- BLM twiss file created
- Each BLM contains 2 detectors
- Each detector measures:
 - **Fluence:** protons, neutrons, photons, muons (+/-), e-e+, pions
 - **Energy deposition**
- Each measurement made for a different beam source (loss in collimators)
Simulation of Beam Loss monitors 2/3

Cross-talk Matrices (vertical detector), 7 TeV/beam

Horizontal beam loss scenario

<table>
<thead>
<tr>
<th></th>
<th>L1</th>
<th>R1</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>C6</td>
<td>B6</td>
</tr>
<tr>
<td></td>
<td>A4</td>
<td>B5</td>
</tr>
<tr>
<td>TCPC6</td>
<td>0.9917</td>
<td>0.6935</td>
</tr>
<tr>
<td></td>
<td>0.00918</td>
<td>0.06547</td>
</tr>
<tr>
<td>TCPB6</td>
<td>0.00914</td>
<td>0.3075</td>
</tr>
<tr>
<td></td>
<td>0.01524</td>
<td>0.10643</td>
</tr>
<tr>
<td>TCPA6</td>
<td>0</td>
<td>5</td>
</tr>
<tr>
<td>TCSCB5</td>
<td>0</td>
<td>5</td>
</tr>
<tr>
<td>TCSCA5</td>
<td>0</td>
<td>5</td>
</tr>
</tbody>
</table>

Vertical beam loss scenario

<table>
<thead>
<tr>
<th></th>
<th>L1</th>
<th>R1</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>D6</td>
<td>C6</td>
</tr>
<tr>
<td></td>
<td>A4</td>
<td></td>
</tr>
<tr>
<td>TCPD6</td>
<td>0.96283</td>
<td>0.57849</td>
</tr>
<tr>
<td></td>
<td>0.02639</td>
<td></td>
</tr>
<tr>
<td>TCPB6</td>
<td>0.03817</td>
<td>0.41949</td>
</tr>
<tr>
<td></td>
<td>0.00396</td>
<td></td>
</tr>
<tr>
<td>TCSCB5</td>
<td>5.5E-390</td>
<td>0.00319</td>
</tr>
<tr>
<td>TCSCA5</td>
<td>0</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>0.03414</td>
<td></td>
</tr>
<tr>
<td>TCSCB5</td>
<td>0</td>
<td>5</td>
</tr>
<tr>
<td>TCSCA5</td>
<td>0</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>0.68195</td>
<td></td>
</tr>
</tbody>
</table>

- Cross talk ~ 1/d
- Big cross-talk between primaries
- Little backscattering
- Similar picture for horizontal and vertical beam
- Similar cross-talk for the 2 detectors
- Loss estimation
 \[L = (M^T M)^{-1} M \]
Simulation of Beam Loss monitors 3/3
Predicted response of every BLM

- Detected particles
 - Protons
 - Neutrons
 - Muons (+/-)
 - Photons
 - Electrons/positrons
 - Pions (+/-)

- Loss scenarios (7TeV)
 - Horizontal
 - Vertical
 - Full losses

- 2 detectors/BLM
- Injection not analyzed
Future outlook

- **Cold section: Injection**
- **Warm magnets:**
 - Correct position
 - Heat load during injection
 - Vertical case...
- **Reports**
 - IR7-FLUKA techniques
 - Optimization of the active absorber scheme for the protection of the dispersor suppressor
 - Protection of warm elements at IR7, passive absorbers and collimators
 - FLUKA simulations for the optimization of beam loss monitors
- ...