

Collimation – Latest Developments

R. Assmann for the Collimation Team Accelerator & Beams Department, CERN

> LHC Machine Advisory Committee December 8th – 10th 2004

The LHC Collimation Challenge

The LHC machine:

Physics

Accelerator design

High luminosity at high energy: Great discovery potential!

Handling of ultra-intense beams in a super-conducting environment: Great risk of quenching & damage!

 \rightarrow

 \rightarrow

Cleaning of the Beam Halo...

LHC Collimation

... two stage cleaning ...

Worries for the LHC

Can we predict requirements and all failures?	10 _	complexity
Survival of collimators with high density LHC beam?	1000 _	density
Performance for avoiding quenches?	1000 _	power/quench limit
Can we handle mechanical and beam tolerances?	10 _	smaller gaps
Peak loss rate (peak heat load: 500 kW)?	100 _	stored energy
Average loss rate (radioactivity)?	100 _	loss per year

A very difficult problem! To solve it we must rely on first-class expertise in:

Accelerator physics – Nuclear physics – Material science Mechanical engineering – Radioprotection

Without collimation: Store 5 ‰ of nominal intensity (1h lifetime) or always ensure lifetime of 220 h (nominal intensity). Quench every magnet 1500 times if beam is lost in 1 turn and distributed over 27 km.

Addressing the Worries...

- Set-up of collimation project in early 2003
- Definition of "collimation design philosophy"
- Optics and cleaning design for new baseline solution

→ See MAC talk Dec 2003

- Detailed design work on phase I of new baseline:
 - Collimator design and prototyping
 - Energy flow in cleaning insertions and leakage to downstream
 - Overall layout optimization of cleaning insertions
 - Efficiency studies for beam halo
 - Design verification with beam tests
- Preparation of series production

Optics and Cleaning Design (MAC Dec 2003)

Two warm LHC insertions dedicated to cleaning:

- IR3 → Momentum cleaning
- IR7 → Betatron cleaning

Building on collimation system design that started in 1992!

Various collimators in experimental insertions IR1, IR2, IR5, IR8.

Four collimation systems: Momentum and betatron for two beams!

Addressing the Worries...

- Set-up of collimation project in early 2003
- Definition of "collimation design philosophy"
- Optics and cleaning design for new baseline solution

→ See MAC talk Dec 2003

LHC Collimation

Detailed design work on phase I of new baseline:

- Collimator design and prototyping
- Energy flow in cleaning insertions and leakage to downstream
- Overall layout optimization of cleaning insertions
- Efficiency studies for beam halo
- Design verification with beam tests
- Preparation of series production

Collimator Design and Prototyping

Example for strong collaborative effort across different departments at CERN:

- AB (specification, energy deposition, motorization and sensors, project home)
- (mechanical design, ANSYS, prototyping)
- (vacuum issues for jaws)
- **SC** (radiation issues)

Mechanical design effort led by TS department!

Start of design: Start of prototyping: Laboratory tests: Installation for beam tests: Beam tests:

September 2003

February 2004 July 2004 August 2004 October/November 2004

Collimator Specification

Parameter	Unit	ТСР	TCS
Azimuthal orientation		X, Y, S	various
Jaw material		C or C-C	C or C-C
Jaw length	cm	20	100
Jaw tapering	cm	2×10	2×10
Jaw dimensions	mm^2	65 imes 25	65 imes 25
Jaw coating			
Jaw resistivity	$\mu\Omega { m m}$	minimal	minimal
Surface roughness	μ m	≤ 1	≤ 1.6
Surface flatness	μ m	25	25
Heat load	kW	1.5	7
Max. operational temperature	$^{\circ}\mathrm{C}$	50	50
Outbaking temperature	$^{\circ}\mathrm{C}$	250	250
Maximum full gap	mm	60	60
Minimum full gap	mm	0.5	0.5
Knowledge of gap	μ m	50	50
Jaw position control	μ m	≤ 10	≤ 10
Control jaw-beam angle	μ rad	≤ 15	≤ 15
Reproducibility of setting	μ m	20	20
DOF movement (hor. collimator)		Х, Х', Ү	X, X', Y
DOF movement (vert. collimator)		Y, Y', X	Y, Y', X
Positional installation accuracy	μ m	100	100
Angular installation accuracy	μ rad	150	150

Driving criteria for material was robustness:

LHC Collimation

Project

CERN

→ Carbon-carbon

Resistivity (7-25 μ m) Short lead times

Collimator Scheme

A. Bertarelli, R. Perret et al

LHC Collimation Project **Building the LHC collimator** CERN Jaw Vacuum clamping tank support with cooling

Completed jaw

Building the LHC collimator

Vacuum tank with two jaws installed *R. Assmann*

Beam passage for small collimator gap with RF contacts for guiding image currents

Moving the jaws...

Surface flatness

S. Redaelli et al

LHC Collimation Project

After 250 °C bakeout: 40 – 60 μm flatness on clamped jaw!

Flatness specification changed to 40 μm (stricter tolerances on other parameters)!

Deformation with Transient Beam Heating

A. Bertarelli A. Dallachio

Time dependent "banana" effect (ANSYS)

Halo data - AB/ABP

Energy deposition for 10 s drop of lifetime to 0.2 h (1% of beam lost in 10 s) - *FLUKA team*

Collimator deforms away from beam \rightarrow only reduction in efficiency for a few collimators!

CERN

Other collimator features

- Automatic jaw retraction in case of motor failure (no collimators stuck in the beam)
- In-situ spare concept by moving the whole tank (move to fresh surface if we scratch the surface with beam)
- Direct measurements of jaw positions and absolute gap (we always know where the jaws are)
- Precision referencing system during production
- Measurements of jaw temperature
- Radiation impact optimization: Electrical and water quick plug-ins, quick release flanges, ceramic insulation of cables, ...
- RF contacts to avoid trapped modes or additional impedance

C. Rathjen, AT/VAC

Collimator Supports and Inter-Connects

LHC Collimation

CERI

Energy flow in cleaning insertions and leakage to downstream

- Multi-turn tracking of proton halo (primary secondary tertiary) provides locations of inelastic interactions in jaws around the LHC ring (AB/ABP):
 - Efficiency of halo cleaning (later).
 - Only proton halo is transported over long distances.
- Energy is carried by proton-induced showers:
 - Showering studies in IR3 (IHEP) and IR7 (CERN_FLUKA team).
 - Showers lost locally
- Information on:
 - Energy load on downstream cold regions.
 - Heating and radiation to components.

From halo tracking to losses

Primary Loss Distributions compared to Final Distribution of Inelastic Interactions

M. Brugger et al

LHC Collimation

CERN

J.B. Jeanneret, I. Baishev

- Need active and passive absorbers to limit load on auxiliary systems
- Consequences for vacuum ...

Lifetime limits at 7TeV due to quenching of SC magnets

	Local Allowed Lifetime [hours]			
SC magnet	No TCL	4 TCL		
MCBCV	150	1.2		
Q6	18	0.3		
Q7	18	0.2		
MB8a	15	1.8		
MB8b	36	1.3		
Q8	9	2.5		

114

z, m

112

J.B. Jeanneret, I. Baishev

cable running along **IR3 collimators!**

CERM

Ongoing studies...

R. Assmann

102

106

104

108

110

Detailed FLUKA Description of IR7

V. Vlachoudis et al

Line input file for FLUKA generated from collimation halo tracking program. Automatic generation of FLUKA geometry with dynamic placement of collimators. Powerful tool -> Automatic generation of full LHC FLUKA geometry on the horizon?

Studies on absorbers → Similar outcome as in IR3 – factor 200 improvement needed!

Mean values \pm 2m horizontally and \pm 1m vertically.

Radiation to electronics

LHC Collimation

CERN

Doses in racks $\leq 5 \text{ Gy/y}$

~ 1 order of magnitude less than without active absorbers but still factor 10 too high!

K. Tsoulou et al

Collimator exchange in IR7 (simple scenario)							
Actions	Time required (min)	1h	8h	1d	1w	1m	4m
Access	4 min	0.03	0.02	0.01	0.003	0.002	0.001
Exchange	1 h	4.7	3.4	2.7	1.6	0.9	0.4
Return	10 min	0.03	0.02	0.01	0.003	0.002	0.001
	Sum	4.8	3.4	2.7	1.6	0.9	0.4

Cleaning Efficiency

- Cleaning is the **main functionality** of the collimation system!
- Layout designed for optimal cleaning efficiency (not for passive machine protection)!
- If efficiency of cleaning is lost then **beam abort**:
 - Imminent quench is detected at magnets through increased beam loss rate.
 - Beam dump.
- Understanding and fast optimization of cleaning inefficiency is crucial for achieving integrated luminosity!
- Beam tracking studies moved to detailed loss patterns!
- More on efficiency in a realistic environment tomorrow!

Halo Beam Loss Patterns

Ideal cleaning. Ideal aperture. 0.2h beam lifetime.

Peaks in all triplets: Cure with tertiary collimators!

Massive computing effort:

5 _ 10⁶ p tracked over 200 turns through each LHC element (full chromatic and non-linear treatment)! 27,000 loss points checked in aperture!

IR8: Nominal optics with $\beta^* = 10 m$

More tomorrow!

Impedance Limitation

LHC Collimation

CERN

Verification with Beam Test

- Two prototype collimators installed.
- SPS ring:
 - Functional test
 - Beam-based alignment with small gaps
 - Measurement of impedance, HOM, vacuum, e-cloud, ...
- TT40:
 - Robustness test with 2.4 MJ/mm²

LHC Collimation

Beam-Based Collimator Alignment

LHC Collimation

CERM

Down to 1 mm with stored beam \rightarrow Gaps smaller than required in LHC achieved! Absolute gap: ~ 100µm. Reproducibility: ~ 20 µm Beam-based alignment with 50-100 µm accuracy!

Tune While Changing LHC Collimator Gap

So-called BBQ device (M. Gasior & R. Jones)

SPS tune depends on collimator gap!

M. Gasior, R. Jones et al

G. Robert-Demolaize et al

Conclusion

- Collimation is one of the most challenging issues in LHC.
- Many **detailed studies** have been completed. Difficult problems encountered but basic solutions have been established.
- Layout IR3 and IR7 has strongly advanced.
 - All collimator positions have been frozen, absorbers are still being placed. Found need for factor 200 improvement with absorbers!
 - General optimization for quench protection, lifetime of components, radiation impact is essential.
 - Remaining layout worries: SC link cable in IR3 Absorbers in IR7 Dose to electronics in IR7 Final layout of ventilation and cabling in IR7.
 - Should be finalized in the next months...
- Successful external review of the collimation project in July 2004.
- Completed most of phase I collimator design and prototyping. Hope to achieve up to 50% of nominal intensity with it!
- Many design choices verified in beam tests, now preparing for series production.
 - → Many achievements but also still concerns...

Concerns

- Get series production on its way and have collimators, supports, vacuum interconnects, infrastructure ready for 2007!
- Collimator control and interface to BLM system and machine protection:
 - Need fast optimization of efficiency (hundreds of DOF).
 - Need high flexibility and excellent safety.
 - Need good robustness against beam-induced noise.

Cleaning efficiency:

- Completely solve energy deposition by showers with absorbers (factor 200)!
- Robustness of multi-turn halo cleaning against imperfections (easily another factor 10 lost).
- Include beam-gas scattering in IR7!
- Predict detailed situation at experimental insertions (background).
- General conditions in and close to cleaning insertions (radiation, access, Ozone, ...).
- No solution for nominal **ion collimation**. Early ion scheme is OK.
- Prepare for nominal performance: R&D on advanced phase 2 collimation now (with US colleagues).

The LHC Collimation Team

Excellent AB, TS, AT, SC collaboration inside CERN!

O. Aberle, R. Assmann, I. Baishev, A. Bertarelli, M. Brugger, S. Calatroni,
E. Chiaveri, F. Decorvet, B. Dehning, A. Ferrari, D. Forkel-Wirth, E.B. Holzer,
J.B. Jeanneret, M. Jimenez, M. Jonker, V. Kain, M. Lamont, M. Magistris, A. Masi, M.
Mayer, E. Metral, R. Perret, L. Ponce, C. Rathjen, S. Redaelli,
G. Robert-Demolaize, S. Roesler, F. Ruggiero, M. Santana Leitner, D. Schulte,
G. Spiezia, P. Sievers, K. Tsoulou, H. Tsutsui, V. Vlachoudis, J. Wenninger, ...

Additional support for beam tests:

G. Arduini, T. Bohl, H. Burkhardt, F. Caspers, M. Gasior, B. Goddard, L. Jensen, R. Jones, T. Kroyer, R. Steinhagen, J. Uythoven, H. Vincke, F. Zimmermann

Formal outside collaborations with...

IHEP (IR3 energy deposition studies)

Kurchatov Institute (radiation effects on C-C jaws)

SLAC, BNL, FNAL (phase 2 R&D and tertiary collimators)

Collimation Performance with lons (H. Braun)

Two-stage betatron cleaning system was designed for protons → low energy loss, large betatronic kick!

The relative weight of energy loss and transverse kicks is very different for ions (much stronger energy loss).

Additional physics processes change q/m for ions.

→ LHC betatron cleaning system does not work for ions as a twostage cleaning system.

→ Loss in efficiency with single-stage cleaning compensates lower intensities.

➔ Nominal intensities violate quench limit downstream of betatron cleaning system (assuming same operating range as for protons).

Detailed studies performed by H. Braun.

²⁰⁸Pb-ion/matter interactions in comparison with proton/matter interactions. (values are for particle impact on graphite)

Physics process	p	þ	²⁰⁸ Pb	208 Pb
	injection	$\operatorname{collision}$	injection	collision
Ionisation energy loss $\frac{dE}{E dx}$	$0.12~\%/{ m m}$	0.0088 %/m	$9.57~\%/{ m m}$	0.73~%/m
Multiple scattering	$73.5 \mu rad/m^{1/2}$	$4.72 \mu rad/m^{1/2}$	$73.5 \mu rad/m^{1/2}$	$4.72 \mu rad/m^{1/2}$
projected r.m.s. angle				
Electron capture length	-	-	$20~{ m cm}$	312 cm
Electron stripping length	-	-	$0.028~{ m cm}$	$0.018 \mathrm{~cm}$
ECPP interaction length	-	-	24.5 cm	$0.63~{ m cm}$
Nuclear interaction length	38.1 cm	38.1 cm	$2.5~\mathrm{cm}$	$2.2 \mathrm{cm}$
(incl. fragmentation)				
Electromagnetic dissociation	-	-	33.0 cm	19.0 cm
length				

H. Braun

Trajectories around collimation in IR7 as computed by ICOSIM (computed for injection energy)

LHC Collimation

Project

CERN

R. Assmann

H. Braun

H. Braun

- Collimator cycled (at ca 4h33) between the gap of 51 mm and 2 mm.
- Tune frequency was changing by 10 Hz, i.e. 2.3×10^{-4} (× f_{rev})

245 MHz system confirms data (F. Caspers/T. Kroyer)

Also: Standard tune measurments (H. Burkhardt)

Jaw Temperature After Impact

G. Robert-Demolaize et al

LHC Collimation

CERN

Transverse energy density: Describes damage potential of the LHC beam (3 orders of magnitude more dangerous than present beams)

Peak Energy Deposition in coils [mW/cm³/proton]

J.B. Jeanneret, I. Baishev

L. Ponce et al

Collimation team: Collimator in P5 of SPS

BLM team: 8 downstream BLMs

Together:1 Hz DAQ and plotting in
control room

