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Introduction and motivation

• SixTrack simulations (combining optical tracking and particle-matter 
interaction in collimators) previously used to estimate performance of 
nominal LHC collimation system

• A simulation of the present machine provides very valuable benchmark

• Comparison with measurements gives understanding of machine 
performance and simulation accuracy

• Output of SixTrack simulation used as starting conditions in other 
problems (e.g. simulations of experimental background)



Simulation setup
• Using present machine conditions:

• Intermediate collimator settings

IR7

• Collimator TCLA.B5L3.B2 deactivated
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Optics from MAD-X

β*=3.5 m in all IPs, thin lens optics used to create SixTrack input (thanks to 
M. Giovanozzi and O. Berrig)
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Optics from MAD-X

Good agreement in β–function. Smaller deviations in dispersion.
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Simulation setup (2)

• Initial distributions:
• Pencil beam directly on IR7 horizontal or vertical primary, or
• Flat distribution in halo plane (spread of 0.0015 σ around 5.7 σ ), 

Gaussian cut at 3 σ in other transverse plane, energy spread 1.129E-4
• Results from these distributions very similar - showing only results from 

pencil beams

• Simulations done for B1 and B2 – showing only B1 (B2 similar)
• 6.4e6 primary particles per simulation (resolution in local cleaning 

inefficiency: 1.5e-6/m )
• Statistical uncertainty ~ square root of number of counts in bin

• In total 8 simulations (H and V, 2 beams, 2 distributions)

R. Bruce, 2010.10.25



Results: horizontal halo B1
• Global inefficiency ≈ 1.1e-3

• Highest local cleaning inefficiency in cold region ≈ 2.7e-5

R. Bruce, 2010.10.25



Results: vertical halo B1
• Global inefficiency ≈ 8.2e-4

• Highest local cleaning inefficiency in cold region ≈ 2.3e-5
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Comparison with measured loss map
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TCTs much higher in measurement
(though low statistics!)

Measured loss map 18/20/2010



Zoom on IR7

Comparison with measured loss map

Warm losses orders of magnitudes higher in 
measurement (showers directly on BLMs?)

In simulation,  less losses on
TCSG.A6L7.B1 than on TCSG.B5L7.B1 
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Observations

• Highest cold peak from measurements is ~ 2e-4 (almost factor 10 
above simulation result, but no imperfections used in simulation  -
consistent with earlier results)

• Measured and simulated highest cold peaks found within 37 m.
• TCT leakage much lower in simulation (up to 1 order of 

magnitude)
• Vertical TCTs in IR2 and IR5 see higher losses than horizontal TCT 

with horizontal halo. Confirmed by measurements
• Leakage to IR3 accurate within 50%
• Local deviations of smaller peaks, though too low statistics to 

study these (very small) losses
• With TCTs at 15 σ, losses in TCTs in IR1 and IR5 lower by factor 

~80 compared to 7 TeV simulations by Thomas with TCTs at 8.3 σ
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Conclusions

• Loss pattern in present machine (β*=3.5m, intermediate collimator 
settings) simulated with SixTrack

• Simulated global inefficiency ≈ 1e-3

• Highest simulated local inefficiency in cold parts ≈ 2.7e-5

• Overall good agreement between measurements and simulations

• Some smaller discrepancies still to be understood
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TCT margins and minimum β*
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Introduction

• Present TCT settings based on aperture calculations using the n1-
method
• n1=maximum acceptable primary collimator opening, in units of beam σ, that 

still provides a protection of the mechanical aperture against losses from the 
secondary beam halo

• n1 calculated with MAD-X, taking into account ideal aperture and optics. Then 
adding misalignments, β-beat and orbit offsets within given tolerances

• May result in too pessimistic results!

• Alternative method: use aperture measurements performed at 
injection and scaling laws to calculate aperture at top energy

• As we will see, this is not possible in a general case, but can be 
done in the LHC triplet due to the special geometry of the problem



Aperture measurements

• Global aperture measurements performed in September 2010 (R. 
Assmann, R. Giachino, M. Giovannozzi, D. Jacquet, L. Ponce, S. 
Redaelli, J. Wenninger, see presentation in LHCCWG):

• Pessimistic assumption: triplet aperture must be larger than global 
aperture
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Calculation procedure
• Find s-value of limiting 

aperture with MAD-X (h and v)
• Assume injection aperture 

equal to global limit
• Because of geometry, only one 

plane matters
• Scale beam size to pre-

collision (larger βx and γ), add 
orbit offsets in relevant plane 
from MAD-X

• Solve for top energy aperture
• 2D problem reduced to 1D
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MQXB.B2L1
s= -40.8 m



Calculation with tolerances

• Calculation above assumes same β-beat at this s-location at 
injection and squeeze, and orbit shift given by MAD-X

• Worst case: assume β-function larger by factor λ at squeeze and 
smaller by λ at injection

• Include additional orbit offset δu. Solve again for aperture at 
squeeze

• On the other hand, note that assumption that global limit occurs in 
triplet is already very pessimistic!
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Calculation setup

• Two sets of calculations performed:
• λ=1 and δu=0 (more optimistic case)
• λ=1.1 (20% β-beat) and δu=1mm

• For each set, calculated TCT settings assuming 2.5 σ margin to 
aperture in the configurations β=2.0, 2.5, 3.0, 3.5 m

• All experimental IRs considered, both beams
• Horizontal and vertical planes treated separately to get rid of 

problem where aperture bottleneck jumps between different s-
locations

• Bottleneck in separation plane (normally the limiting one) always in 
triplet of incoming beam, bottleneck in crossing plane on outgoing 
beam
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Reducing separation?

• Aperture margin in separation 
plane can be increased if top 
energy separation is reduced 
from 2mm to nominal 0.7mm

• Including both values of 
separation in calculation
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Preliminary results (1)
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B1,
λ=1, 
δu=0



Preliminary results (2)
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B1,
λ=1.1, 
δu=1 mm



Conclusions (1)

• Apertures at top energy and squeeze calculated from measurements at 
injection - alternative to standard n1 calculation

• Possible only in special cases where geometry allows 2D problem to be 
reduced to 1D

• Possible in triplets in experimental IRs

• Pessimistic assumption of global aperture limit in triplet

• More detailed measurement of the local triplet aperture at injection 
could be very useful to refine calculations
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Conclusions (2)
• With no difference in β-beat and nominal orbit shifts, we can squeeze 

to β*=2.5m keeping present TCT settings and approximate margins
• With no difference in β-beat and nominal orbit shifts, we can squeeze 

to β*=2.0m keeping present TCT settings and approximate margins if 
separation is reduced to 0.7 mm

• With 20% β-beat and 1mm additional orbit drift, we can squeeze to 
β*=2.5m if separation is reduced to 0.7 mm and TCTs moved in to 
14.3 σ (or if margin TCT-aperture reduced by 0.7 σ)

• To squeeze to β*=2.0m, TCTs would have to move in to 12.6 σ, or we 
have to reduce margin between TCT and aperture

• We could try a configuration that seems realistic (e.g. β*=2.5m). Start 
with low intensity, do loss map and maybe asynchronous dump test. If 
triplet aperture is protected by TCT, this configuration can be used 
during operation
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Backup slide: n1

• Available aperture traditionally expressed in n1 (largest setting in 
sigma of primary collimator such that the local aperture is 
protected from secondary halo) 

• In MAD-X, n1 is varied until the cut of the secondary collimators 
touches aperture, tolerances taken into account

h

r
v

n1

Primary cut

Secondary cut

Aperture
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