

Part 1: Simulations with SixTrack of loss patterns at β*=3.5m Part 2: TCT margins and minimum β*

R. Bruce,

R.W. Assmann, F. Burkhard, M. Cauchi, S. Redaelli, G. Valentino, D. Wollmann

Outline

- Part 1: Simulations with SixTrack of loss patterns at $\beta^*=3.5m$
 - Introduction and motivation
 - Simulation setup
 - Results
 - Comparison with measured loss maps
 - Conclusion
- Part 2: TCT margins and minimum β^*
 - Introduction and motivation
 - Method for calculating top energy aperture margins from measurements at injection
 - Resulting TCT settings for different optics configurations
 - Conclusion

Introduction and motivation

- SixTrack simulations (combining optical tracking and particle-matter interaction in collimators) previously used to estimate performance of nominal LHC collimation system
- A simulation of the present machine provides very valuable benchmark
- Comparison with measurements gives understanding of machine performance and simulation accuracy
- Output of SixTrack simulation used as starting conditions in other problems (e.g. simulations of experimental background)

• Collimator TCLA.B5L3.B2 deactivated

 $\beta^*=3.5$ m in all IPs, thin lens optics used to create SixTrack input (thanks to M. Giovanozzi and O. Berrig)

Optics from MAD-X

LHC Collimation

Project

CERN

Good agreement in β -function. Smaller deviations in dispersion.

Simulation setup (2)

- Initial distributions:
 - Pencil beam directly on IR7 horizontal or vertical primary, or
 - Flat distribution in halo plane (spread of 0.0015 σ around 5.7 σ), Gaussian cut at 3 σ in other transverse plane, energy spread 1.129E-4
 - Results from these distributions very similar showing only results from pencil beams
- Simulations done for B1 and B2 showing only B1 (B2 similar)
- 6.4e6 primary particles per simulation (resolution in local cleaning inefficiency: 1.5e-6/m)
 - Statistical uncertainty ~ square root of number of counts in bin
- In total 8 simulations (H and V, 2 beams, 2 distributions)

Results: horizontal halo B1

- Global inefficiency $\approx 1.1e-3$
- Highest local cleaning inefficiency in cold region $\approx 2.7e-5$

Results: vertical halo B1

- Global inefficiency \approx 8.2e-4
- Highest local cleaning inefficiency in cold region \approx 2.3e–5

Comparison with measured loss map

Observations

- Highest cold peak from measurements is ~ 2e-4 (almost factor 10 above simulation result, but no imperfections used in simulation – consistent with earlier results)
- Measured and simulated highest cold peaks found within 37 m.
- TCT leakage much lower in simulation (up to 1 order of magnitude)
- Vertical TCTs in IR2 and IR5 see higher losses than horizontal TCT with horizontal halo. Confirmed by measurements
- Leakage to IR3 accurate within 50%
- Local deviations of smaller peaks, though too low statistics to study these (very small) losses
- With TCTs at 15 σ , losses in TCTs in IR1 and IR5 lower by factor ~80 compared to 7 TeV simulations by Thomas with TCTs at 8.3 σ

Conclusions

- Loss pattern in present machine (β*=3.5m, intermediate collimator settings) simulated with SixTrack
- Simulated global inefficiency $\approx 1e-3$
- Highest simulated local inefficiency in cold parts $\approx 2.7e-5$
- Overall good agreement between measurements and simulations
- Some smaller discrepancies still to be understood

TCT margins and minimum $\boldsymbol{\beta}^*$

R. Bruce, R.W. Assmann

- Introduction and motivation
- Method for calculating top energy aperture margins from measurements at injection
- Resulting TCT settings for different optics configurations
- Conclusion

Introduction

- Present TCT settings based on aperture calculations using the n1method
 - n1=maximum acceptable primary collimator opening, in units of beam σ, that still provides a protection of the mechanical aperture against losses from the secondary beam halo
 - n1 calculated with MAD-X, taking into account ideal aperture and optics. Then adding misalignments, β -beat and orbit offsets within given tolerances
 - May result in too pessimistic results!
- Alternative method: use aperture measurements performed at injection and scaling laws to calculate aperture at top energy
- As we will see, this is not possible in a general case, but can be done in the LHC triplet due to the special geometry of the problem

Aperture measurements

LHC Collimation

• Global aperture measurements performed in September 2010 (*R. Assmann, R. Giachino, M. Giovannozzi, D. Jacquet, L. Ponce, S. Redaelli, J. Wenninger, see presentation in LHCCWG):*

σ	Horizontal	Vertical
Beam 1	12.5	13.5
Beam 2	14	13

Pessimistic assumption: triplet aperture must be larger than global aperture

Calculation procedure

- Find s-value of limiting aperture with MAD-X (h and v)
- Assume injection aperture equal to global limit
- Because of geometry, only one plane matters
- Scale beam size to precollision (larger β_x and γ), add orbit offsets in relevant plane from MAD-X

$$|u_i| + n_i \sigma_i = |u_p| + n_p \sigma_p$$

- Solve for top energy aperture
- 2D problem reduced to 1D

LHC Collin

- Worst case: assume $\beta-function$ larger by factor λ at squeeze and smaller by λ at injection
- Include additional orbit offset δu. Solve again for aperture at squeeze

$$n_p = \frac{|u_i| - |u_p| - \delta u + n_i \sigma_i}{\sigma_p} = \frac{|u_i| - |u_p| - \delta u}{\sqrt{\beta_p \lambda \epsilon_n / \gamma_p}} + \frac{n_i}{\lambda} \sqrt{\frac{\beta_{ui} \gamma_p}{\beta_{up} \gamma_i}}$$

 On the other hand, note that assumption that global limit occurs in triplet is already very pessimistic!

Calculation setup

- Two sets of calculations performed:
 - $\lambda = 1$ and $\delta u = 0$ (more optimistic case)
 - $\lambda = 1.1$ (20% β -beat) and $\delta u = 1 mm$
- For each set, calculated TCT settings assuming 2.5 σ margin to aperture in the configurations β =2.0, 2.5, 3.0, 3.5 m
- All experimental IRs considered, both beams
- Horizontal and vertical planes treated separately to get rid of problem where aperture bottleneck jumps between different slocations
- Bottleneck in separation plane (normally the limiting one) always in triplet of incoming beam, bottleneck in crossing plane on outgoing beam

Reducing separation?

- Aperture margin in separation plane can be increased if top energy separation is reduced from 2mm to nominal 0.7mm
- Including both values of separation in calculation

Preliminary results (1)

1

A (

1

A

1

1

B1, λ=1, δu=0 0*

A

>

1

mamu /

>

A (

β^{+}	$A_x(\sigma)$	TOTH (σ)	$A_y(\sigma)$	TUTV (σ)	$A_x(\sigma)$	TOTH (σ)	$A_y(\sigma)$	TUTV (σ)		
		sep =	2 mm		sep = 0.7 mm					
IR1, Beam 1										
3.50	20.5	18.0	26.0	23.5	23.0	20.5	25.9	23.4		
3.00	19.0	16.5	24.1	21.6	21.3	18.8	24.1	21.6		
2.50	50 17.4 (14.9) 22.0		19.5	19.5	17.0	22.0	19.5			
2.00	10 15.5 13.0 19.7		17.2	17.4	14.9	19.7	17.2			
IR2, Beam 1										
3.50	23.1	20.6	26.0	23.5	25.4	22.9	26.0	23.5		
3.00	21.4	18.9	24.1	21.6	23.6	21.1	24.1	21.6		
2.50	19.6	17.1	22.1	19.6	21.6	19.1	22.1	19.6		
2.00	00 17.5 15.0 19.8		17.3	19.3	16.8	19.8	17.3			
IR5, Beam 1										
3.50	24.3	21.8	22.2	19.7	24.3	21.8	24.7	22.2		
3.00	22.5	20.0	20.6	18.1	22.5	20.0	22.9	20.4		
2.50	20.6	18.1	18.8	16.3	20.6	18.1	20.9	18.4		
2.00	18.5	16.0	16.8	14.3	18.5	16.0	18.7	16.2		
IR8, Beam 1										
3.50	24.9	22.4	22.5	20.0	24.9	22.4	24.9	22.4		
3.00	23.1	20.6	20.9	18.4	23.1	20.6	23.2	20.7		
2.50	21.1	18.6	19.1	16.6	21.1	18.6	21.2	18.7		
2.00	18.9	16.4	17.1	14.6	18.9	16.4	19.0	16.5		

Preliminary results (2)

D 4	β^*	$A_x(\sigma)$	TCTH (σ)	$A_y(\sigma)$	TCTV (σ)	$A_x(\sigma)$	TCTH (σ)	$A_y(\sigma)$	TCTV (σ)
B1, λ-1 1		sep = 2 mm				sep = 0.7 mm			
$\delta u=1 \text{ mm}$	IR1, Beam 1								
	3.50	17.5	15.0	22.7	20.2	19.9	17.4	22.6	20.1
	3.00	16.2	13.7	21.0	18.5	18.4	15.9	21.0	18.5
	2.50	14.8	12.3	19.2	16.7	16.8	14.3	19.2	16.7
	2.00	13.3	10.8	17.2	14.7	15.1	12.6	17.2	14.7
	IR2, Beam 1								
	3.50	19.9	17.4	22.7	20.2	22.2	19.7	22.7	20.2
	3.00	18.5	16.0	21.0	18.5	20.6	18.1	21.0	18.5
	2.50	16.9	14.4	19.2	16.7	18.8	16.3	19.2	16.7
	2.00	15.1	12.6	17.2	14.7	16.8	14.3	17.2	14.7
	IR5, Beam 1								
	3.50	21.1	18.6	19.0	16.5	21.1	18.6	21.4	18.9
	3.00	19.6	17.1	17.6	15.1	19.6	17.1	19.9	17.4
	2.50	17.9	15.4	16.1	13.6	17.9	15.4	18.2	15.7
	2.00	16.0	13.5	14.4	11.9	16.0	13.5	16.3	13.8
	IR8, Beam 1								
	3.50	21.6	19.1	19.2	16.7	21.6	19.1	21.6	19.1
	3.00	20.1	17.6	17.9	15.4	20.1	17.6	20.1	17.6
	2.50	18.4	15.9	16.3	13.8	18.4	15.9	18.3	15.8
	2.00	16.4	13.9	14.6	12.1	16.4	13.9	16.4	13.9

Conclusions (1)

- Apertures at top energy and squeeze calculated from measurements at injection – alternative to standard n1 calculation
- Possible only in special cases where geometry allows 2D problem to be reduced to 1D
 - Possible in triplets in experimental IRs
- Pessimistic assumption of global aperture limit in triplet
- More detailed measurement of the local triplet aperture at injection could be very useful to refine calculations

Conclusions (2)

- With no difference in β -beat and nominal orbit shifts, we can squeeze to $\beta^*=2.5m$ keeping present TCT settings and approximate margins
- With no difference in β -beat and nominal orbit shifts, we can squeeze to $\beta^*=2.0m$ keeping present TCT settings and approximate margins if separation is reduced to 0.7 mm
- With 20% β -beat and 1mm additional orbit drift, we can squeeze to $\beta^*=2.5m$ if separation is reduced to 0.7 mm and TCTs moved in to 14.3 σ (or if margin TCT-aperture reduced by 0.7 σ)
- To squeeze to $\beta^*=2.0m$, TCTs would have to move in to 12.6 σ , or we have to reduce margin between TCT and aperture
- We could try a configuration that seems realistic (e.g. $\beta^*=2.5m$). Start with low intensity, do loss map and maybe asynchronous dump test. If triplet aperture is protected by TCT, this configuration can be used during operation

Backup slide: n1

- Available aperture traditionally expressed in n1 (largest setting in sigma of primary collimator such that the local aperture is protected from secondary halo)
- In MAD-X, n1 is varied until the cut of the secondary collimators touches aperture, tolerances taken into account

