

DRAFT

LARP Phase II Secondary Collimator RC-1 Collimator Development Status and Outlook Revised 09/21/09

Outline

- Strategy for Prototype Tests
- Overview of SLAC design
- Fabrication update
- Outlook

LARP

Strategy for Prototype Tests

Original Plan

- Full mechanical prototype "robustness tested" in TT60
- Final version prototype incorporating "lessons learned" in LHC

Current plan

- Full mechanical prototype with BPMs tested in SPS
 - After off-beamline mechanical, RF & vacuum tests at SLAC & CERN
- A robustness test, either in
 - TT60
 - An "ad-hoc" site to-be-determined if TT60 availability too late relative to a future decision on the desired timeline for technology choices, fabrication and installation
 - of either:
 - •The RC-SPS device
 - •An "ad-hoc" device: details yet to be determined
- No LHC prototype test although a 3rd generation RC may be constructed

Mechanical Engineering Decisions Based on Desired Strategy

If TT60 Test first:

- Vacuum tank
 - cylinder with domed ends attached with conflat flanges for easy access for later examination of beam-induced damage
 - ports for laser micrometers, cameras and TBD instrumentation
 - high vacuum not important
- Use RC0 jaw & RC1 jaw as quickest, most economical path forward
 - New jaws, new tank for an LHC prototype

For SPS Test first

- Shorter domes welded to main tank transitioning to 2-axis BPM assemblies
 - Flange-to-flange length same as for LHC
 - BPM strategy being discussed with experts in a separate loop
- Main tank diameter sized for SPS 60mm jaw opening
- BPM flanges currently seen as ROUND with 60mm ID
- Orientation of jaws and aperture requirements needed now to proceed
 - 60mm x 80mm has been mentioned as a possible requirement

Consequences

If SPS device used for TT60-like test

- need to be able to handle device after exposure to SPS beam
- tests need to be sequential
- must build in enough diagnostic capability to SPS device now
- must buy in to grinding off tank from base plate to gain access to jaws for eventual examination after TT60 cooldown

If a separate TT60 device is called for

- Is this a simple "burn copper" test or are final-design jaws and supports required?
- If final-design jaws required need to know asap to begin fabrication of two more jaws
 - would still make sense to use RC0 as the "witness" jaw to that being hit by the TT60 beam and build a second "RC1" style jaw for the SPS test device

Ideally would like to reserve "spare materials" for a final lessons-learned third generation design that might include a simplified (non-molybdenum) support scheme

Design Details

- BPMs planned for each end of Tank
 - CERN Button Feedthroughs (LHCBPM_F0023) could be used and standard LHC BPM processing electronics can be used.
 - Fiducialization with jaw surfaces should not be a problem
 - Aperture could limit test/establish Jaw orientation.
 - If needed we could provide ~84mm x 60.5 aperture
 - But.. need to know soon.
- Two jaws: The original Heater Test Jaw and a new Prototype Jaw (now under construction)
- Maximum Jaw separation increased to 60mm
- Ferrites for HOM damping
 - Simulations in progress to define ferrite details, previous studies suggest HOM damping will be needed
 - Verify with bench testing @SLAC
 - Ferrites could be added on base plate under Jaw then a re-test done

SPS (not TT60) Test config.

- "RC-0" jaw used for EPAC'08 thermal tests with resistive heater
 - Two Moly half-shafts and half-hubs
 - modifications required at ends to mount to current stainless jaw supports
 - OFE copper jaw material, with 20 facets
 - Groove cut in one facet for heater blocks
 - brazed from 16 ¼-round blocks
 - Facet surface finish and flatness "good", but expect better in next iterations
- "RC-1" jaw in fabrication (see later slides and photos)
 - One piece shaft assembly
 - Jaws from 5 fully-round Glidcop cylinders
- Two more grooved OFE Copper mandrels identical to that used in RC-1
- Enough raw Glidcop material to make two more full length jaws

Mandrel Machining and Winding completed

End Supports/hardware completed

Concept view of "appropriately" flexible Support shown with Shaft mounting hardware

Ceramic bearings roll in "V" groove created by the 2 45 degree chamfers on these parts

LARP LHC PHASE II COLL RC1 - S. Lundgren 21 Sep 2009

A-286 SST Supports for 2 Jaws

Cooling tube exits here

No 12/17

More Parts are real!

Actual Rotator parts now exist

LARP LHC PHASE II COLL RC1 - S. Lundgren 21 Sep 2009

Rotator life cycle test to begin soon

No 13/17

Image Current Foil Assembly simplified

Cone extended the foil to beam pipe flange

Height needed to shadow the Gear Drive on top of Jaw End Support

Cone deleted (foil deemed far enough from beam to show little effect)

Moved Rotator from top of Support so foil height could be minimized

No Brazing Required! No 14/17

Current housing concept for BPMs

Current plans are for 60.5mm diameter geometry for saddle-cut BPM buttons Could reconfigure housing for 2 rather than 4 buttons to increase inside dimension shown

SPS Test Plan Goals

•Demonstrate mechanical operation of device in an active machine environment.

•Demonstrate ability to align jaws with BPMs

•Measure impedance characteristics of full device, both broad-band and trapped modes.

•Similar to phase I graphite SPS tests

Outlook

- Project Milestones are being established to guide completion of Prototype Collimator for late 2010 SPS Installation
 - Collimator set is planned for preliminary SLAC testing starting January 2010
 - Shipment to CERN by August 2010
- Key steps requiring careful coordination to complete first MS are:
 - Machining of Brazed Mandrel (started last week)
 - Brazing on the Glidcop Jaws (due back at SLAC mid October)
 - Final Facet machining (at same vendor, later)