Status of Robustness Studies for the LHC Collimation

R. Assmann, J.B. Jeanneret, CERN SL/AP D. Kaltchev, TRIUMF

> APAC 2001 Beijing, China

Why is collimation important?

One important issue for LHC:

Handling of large beam power to avoid quenches...

Number of protons per beam: $\sim 3 \ 10^{14}$ Quench threshold (fast transients): $\sim 6 \ 10^5 \ \text{p/m}$ in 10 turns

Control fast transient beam losses to 2 10-9!

Quench threshold (steady state):	~ 6 10 ⁶ p/m/s
Beam loss for 35h beam lifetime:	~ 3 10 ⁹ p/s

Factor ~500-1000 too high!

Beam cleaning!

LHC beam cleaning:

Two-stage collimation system:

Primary collimators $(0, \pm 45, 90 \text{ degree})$ to scatter particles.

0.2 m long. Aluminium. Two planar parallel jaws at $\pm 6 \sigma$.

Secondary collimators (many angles) to capture scattered particles. 0.5 m long. Copper. Two planar parallel jaws at $\pm 7 \sigma$.

Cleaning efficiency optimized in design.

Include imperfections: Collimator misalignments. Optics errors, Orbit errors. Non-linear fields. Component failure.

Simulation tools:

New simulation tools developed.

```
COLLIMATE(C_MATERIAL, C_LENGTH, C_ROTATION,
C_APERTURE, C_OFFSET, C_TILT,
X, XP, Y, YP, P, S, NP, ENOM, ...)
```

Include: Collimator rotation angle, material, length, aperture, alignment offset, jaw tilt.

Track: Particle offsets, angles, energies, ...

Either as drift (no interaction) or scatter/absorb particles randomly.

Implemented in new program COLLTRACK (linear transfer matrix) and into full non-linear SIXTRACK code.

Tracking through the LHC:

to

 $(C_{\sigma} + \Delta N)^2 \epsilon_x$

Reduction of phase space with collimation:

Incoming

Turn 1

Turn 5

Turn 50

Realistic impact parameter:

Particle survival:

Inefficiency =

How many particles escape above N σ ? E.g. N=8.

Cleaning inefficiency:

Elliptical beam pipe...

Conclusion:

New tools implemented to study LHC beam cleaning efficiency in the presence of imperfections.

Functionality of **tracking with collimators** demonstrated.

Error studies have been started:

- **Optics** imperfections (transient beta beating)
- Orbit errors
- Collimator imperfections (offset, rotation, tilt)
- Magnet failures
- Collimator damage during loss scenarios

Consequences for collimator design, functionality, operational scenarios to be addressed in future work...