Collimation efficiency in presence of collimator misalignment and sample closed orbit errors

procedure

- the study is done with Dimad
 LHC Beam1 thick-element lattice (injection)
 no field errors; sextupoles only ⇒ chrom. = 2;
- TDRIVE basic block (author Igor Baichev) now implemented in dimad (tracks within the coll-rs)
- The initial point for tracking is set just before the first primary collimator of IR7 ^a and two on-momentum beams are generated entering at micrometer impact distances the upper and lower jaw.
- and track until all lost in the coll-s and on the 2-cm aperture

^asimilar procedure and lattice has been set to model the halo created by IR3, not reported here

a fixed seed = two on-momentum ($\delta = 0$) beams ($\sim 10^5$ particles) entering the first primary of IR7, and corresponds to a new initial seed for the impact distribution and simultaneously new initial seed in the STRUCT module. We record average and maximum values over 10 seeds.

we use elimination procedure – only particles impacting within 1 mum from the jaw edge are tracked.

BEAM and GENERATE commands, see next

Losses on aperture R=2 cm set at all drift entrances

1. "2cm inefficiency": radial aperture set R=2 cm at all drift entrances \Rightarrow

 $N_{part\ lost\ at\ 2cm\ apert.}/N_{total\ lost\ part.}$

Sample Dimad input:

```
! Snapshot date: 03/12/01 Time: 131444
                                            <-- LHC B1 lattice here in line format
                                                 STARTS AT IR7 PRIMARY called TCPA
k2d=-0.106404818276
                                            <-- must have correct chromaticity 2
k2f=0.065210125333
TCPA: COLLIMATOR, L=.05, p1=1, p2=0.006, p3=1.57
                                                  p1 = material
                                                  p2 = half dist between jaws
. . .
                                                  p3 = angle in rad
USE, LHCB1
MATRIX
                                             <-- show the 2 ord matr. and chrom.
. . .
                                             <-- the Twiss
MACHINE
. . .
SET COL
DUMMY
SET COL
TCPA
       5 0 10 10 0,
                           <-- name, iprint, iblack, Apx, Apy, m/turn
SET SYMPLECTIC OPTION ON
BEAM
                                 <-- beam sigmas in TRANSPORT not.
1.e-40 0 0 0 0 0
1.e-40 0 0 0 0
1.e-6 0 0 0
                                 <-- mum impact distr (uniform)
1.e-40 0 0
1.e-40 0
1.e-40
-1.
                                               <-- shift in transv. dir. 2 arc quads
MISALIGNMENT DEFINITION
RQFA78Bx
           .75e-3 0. 0
                            0. 0. 0. 0. 1
RQDA78Bx
                0. .75e-3 0. 0. 0. 0. 1
                                                           C02 = 4 \text{ mm peak to peak}
99,
SET MISALIGNMENT
REFERENCE ORBIT
                                                <-- find closed orbit
GENERATE PARTICLES
45000
                                                     <-- per jaw
0.0 0.0 0.66224207E-02 0.69429323E-04 0.0 0.0 <-- beam centroids
0.0 0.0 -0.66224207E-02 -0.69429323E-04 0.0 0.0,
TRACKING
```

Sample Dimad output

```
OPERATION LIST ,
 TRACKING
 tot part
            90000
 total latt elts 11517
                   392
 tot arc quads
     turn
            ncpart
           90000
       1
 discarded (impact) = 15279
       2
            9437
      65
                6
 LAST 6 ARE NOT TRACKED
Loss statistics after passage
        coll. name lost
                              10
                                    20
                                          30
                                                 40
                                                       50
          DUM
                        0
                              0
                                                  0
                                                        0
     1
                                     0
                                           0
     2
          TCPA
                    29044 28640
                                          171
                                                 14
                                                                 <-- first primary
                                   214
     3
          TCPB
                        8
                              8
                                     0
                                           0
                                                                     of IR7
     4
          TCPC
                      718
                            679
                                    31
                                           6
                                                  1
                                                        1
                            789
     5
          TCPD
                      831
                                    22
                                          17
     6
          CS71
                     4974 4909
                                    37
                                          26
                                                  1
                                                        1
     7
          CS72
                     3086 3033
                                    30
                                          18
                                                  4
                                                        1
                     3569 3519
     8
          CS73
                                    24
                                          23
     9
          CS74
                     6083 5994
                                    47
                                          34
                                                  6
                                                        2
                                                        2
    10
          CS75
                     6336 6253
                                    48
                                          31
          CS76
                     4822 4750
                                          29
                                                  5
                                                        2
    11
                                    36
          CS77
                     1382 1363
    12
                                    12
                                           7
                                                  0
                                                        0
          CS78
                     1710 1680
    13
                                    17
                                          11
                                                                 <-- all IR7 secondary
    14
          CS79
                       52
                             52
                                     0
                                           0
                                                  0
                                                        0
                                                                      coll-s are loaded
                                                  3
    15
          CS710
                     3251 3204
                                    27
                                          17
                                                        0
    16
          CS711
                      319
                            315
                                           3
                                                  0
                                     1
                                                        0
    17
                      43
                             43
                                           0
                                                  0
                                                        0
          CS712
                                     0
    18
          CS713
                      295
                            273
                                           4
                                                  0
                                                        0
                                    18
    19
          CS714
                      180
                            170
                                     7
                                           3
                                                  0
                                                        0
    20
                                          22
                                                  2
          CS715
                     3585
                           3522
                                    38
                                                        1
    21
          CS716
                      329
                            324
                                     2
                                           2
                                                        1
    22
          TCP3
                        0
                              0
                                     0
                                           0
                                                  0
                                                        0
    23
          CS31
                        0
                              0
                                     0
                                           0
                                                  0
                                                        0
                                                                 <-- the IR3 coll-s. are retracted
    24
          CS32
                        0
                              0
                                     0
                                           0
                                                  0
                                                        0
    25
          CS33
                        0
                               0
                                     0
                                           0
                                                  0
                                                        0
                        0
                               0
                                     0
    26
          CS34
```

27	CS35	0	0	0	0	0	0
28	CS36	0	0	0	0	0	0
29	TJ	0	0	0	0	0	0
Discarded	at impact	1	5283				
Total ent	ered	7	4717				
	_						
Collimato	r losses						
IABS=1		25593					
Win		4	4778				
${\tt DppLim}$			246				
total los	t in coll-s	7	0617		0 .	94513	
total los	t coll apert		1756				
Aperture	losses						
apert C			3995	0.05	347		
apert C			4	0.00			
-	utside COS		99	0.00			
=	st on apert.		4098		0.	.05485	
	-						
total los	t	7	4715		0	. 99997	
total sur	vived		6		0	80000	
turn-in t	urn-out	1	65				

One would like to consider all these and put some jaw misalignment and optics errors on top.

In what follows we only take kind 3 plus transverse collimator misalignment.

perfect and imperfect systems

• Ideal

27 coll-s set w.r.t. the vac. chamb. axis at: $n_1 = 6, n_2 = 7$ (IR7), $n_1 = 8.5, n_2 = 9.5$ (IR3) (σ units; n_1 for prim, n_2 for sec.) with rot. angles as database $L_{primary} = 0.2 \ m$ (Al) $L_{sec} = 0.5 \ m$ (Cu)

- shift a QF,QD pair \Rightarrow CO with nearly equal rms and max in both planes
- Corrected closed orbit CO2 (4mm p2p in the arc) from the entrance of the first to the exit of the last coll-r in each IR7 and IR3. Note: an ideal every-turn correction!
- corrected + jaw.mis (random transverse with amplit 0.5 mm and 1 mm)
 random transverse shifts of the midpoints (centres) of the coll-s w.r.t. to the vacuum chamber axis (all coll-s except for the first primary where tracking starts)

collimator-occupied sections COS7 and COS3

and four orbit-correcting kicks applied at entrances and exits of the two COS. The region outside both COS is left uncorrected – it consists of RDS7, ring 7-3 and ring 3-7. We count number of part.:

- 1) absorbed in coll-s and
- 2) lost on the 2cm aperture over:

COS7

COS3

outside both COS

" ring 7337" = ring 7-3 + ring 3-7

	Halo losses, injection, no IR3 coll-s						
	10 seeds $\times 810^4$ part						
	absorbed in	on the 2 cm radial apert					
	${ m collimators}$	COS7	COS3	outside COS	ring 7337		
	Ideal						
ave	0.94514	0.05344	0.00002	0.00140	1.710^{-4}		
max	0.94606	0.05424	0.00005	0.00156	2.510^{-4}		
		Ideal + corrected CO2					
ave	0.94493	0.05355	0.00002	0.00149	2.310^{-4}		
max	0.94604	0.05407	0.00003	0.00160	2.810^{-4}		

Table 1: Average and maximum values of 10 seeds (STRUCT random generator).

Initially, the IR3 collimators were retracted.

Ten patches (seeds) generated (810⁴ part per patch) are applied to each Ideal and Corrected CO2 systems.

The fraction lost in RDS7 is given by the difference of the numbers in the last two columns.

Halo losses, injection, no IR3 coll-s					
worst seed w.r.t. CO2 effect abs.in on the 2 cm radial apert					
	coll-s	COS7	COS3	out. COS	ring 7337
Ideal	0.94474	0.05383	0.	0.00135	1.610^{-4}
corr. CO2	0.94494	0.05355	0.	0.00155	2.810^{-4}
c. CO2 + worst	0.94389	0.05412	0.00005	0.00205	7.610^{-4}
seed j.mis. 0.5mm					
c. CO2 + worst	0.94385	0.05158	0.0001	0.00455	1.910^{-3}
seed j. mis. 1mm					

The worst seed w.r.t. CO2 effect on ring 7337 losses.

Halo losses, injection, with IR3 coll-s worst seed w.r.t. CO2 effect			
	on the 2 cm radial apert		
	outside COS	ring 7337	
Ideal	0.00137	1.410^{-4}	
corr. CO2	0.00150	1.710^{-4}	
corr. CO2 + worst	0.00205	7.410^{-4}	
seed 0.5 mm jaw mis.			
corr. CO2 + worst	0.00443	1.810^{-3}	
seed 1 mm jaw mis.			

IR3 collimators included.

The 10 seeds for CO2 + jaw mis. random uniform $|dx|_{max} = |dy|_{max} = 0.5 \ mm$

	outside COS
Ideal	0.00135
seed 1	0.00391
2	0.00336
3	0.00431
4	0.00532
5	0.00525
6	0.00548
7	0.00455
8	0.00522
9	0.00543
10	0.00450

#	elm.name	drift name	s[m]	N lost
325	RBA78B1	D000039	837.017	4
329	BPM	D000056	838.538	1
831	ROFA78B1	D000057	1908.191	1
1099	RCSA78B1	D000040	2494.945	1
1497	D000014	MCBX3L8	3456.911	1
1578	RQ5R8B1	D000071	3680.509	1
5932	BPMW	RCBWH5R3	13647.172	1
10099	BPMYC	D000024	23306.371	7
10101	RQ5L6B1	D000023	23310.043	1
10131	MKD	D000180	23341.918	1
10133	BPMYC	D000024	23342.771	15
10135	RQ4L6B1	D000023	23346.443	17
10179	BPMYC	D000024	23722.771	4
10181	RQ5R6B1	D000023	23726.443	2

Summary and conclusions

Inefficiency of an imperfect collimation system at injection (only the halo produced at the IR7 primary collimator). We have approximately replaced the LHC vacuum chamber with a 2-cm radial aperture limitation at all drift entrances.

For the Ideal system, studied with $\sim 10^6$ particles divided in 10 patches, the 2-cm inefficiency with respect to ring 7337 was found to be average 1.710^{-4} and maximum 2.510^{-4} (this includes the losses on a ~ 10 sigma absorber) and w.r.t. to the RDS7 $-\sim 1.310^{-3}$

A sample error closed orbit, corrected at every turn to zero within the jaw sections of both IR7 and IR3 has been found to increase the average occupancy of ring 7337 by around 40 %), nearly preserving the maximum one. Introducing IR3 has in this case an improving effect on the worst error seeds (around 60 %).

The worst seed of random uniform transverse misalignment of all collimators in both planes

and both directions with amplitude 0.5 mm, added on top of the corrected orbit, increased the losses nearly 5 times with respect to Ideal.

In future one should consider a more realistic chamber geometry. Correct treatment of the off-momentum particles requires acceleration to be included in the model.