Single and multi-turn properties of the LHC cleaning system

R. Assmann, SL/AP

BCSG 12/3/02

How to relax severe beta and orbit tolerances?

Origin of these tolerances: Secondary collimator must not

become primary collimator!

Consequence: Orbit change + beam size change...

... between primary and secondary collimator...

... must be smaller than collimation depth!

 $(< 1 \sigma \text{ or about } 200 \mu m, top)$

Questions:

Can we put secondary collimators at the same location as primary collimators (inherently safe)?

Maybe go to three stage system to capture first turn debris (more collimators but very robust)?

Set-up for simulations (as usual):

Linear tracking
Ideal optics
Ideal orbit
Top energy, nominal emittance
Impacting halo with 200000 particles, only y
Collimation depth is 6/7 σ
100 turns
Present LHC collimation system (AL, Cu)
No errors in collimator orientation, alignment

The cleaning is a multi-turn system:

Cleaning efficiency:

Number of turns between...

Previous scattering in collimator + Inelastic interaction (absorption)

Secondary collimators catch mainly protons that were scattered in the same turn! They have almost no multi-turn cleaning purpose!

RA

Scattering angles of escaping protons:

Primary collimators: Small scattering angles return to primaries, large scattering angles are caught in the secondaries!

Conclusion:

Primary collimators do the multi-turn cleaning.

Secondary collimators catch the single-turn debris (phase advance conditions are important).

We cannot simply remove the secondary collimators and move them to the place of the primary collimators (as expected)!

Can we find a very robust three-stage collimation system with thin primary collimators (hybrid system)?

Work will continue on this...