CERN Meeting on Absorbers and Collimators for the LHC Beam on 25.1.02

Preliminary Summary

R. Assmann, SL/AP

Complete summary being prepared by R. Assmann, C. Fischer, J.B. Jeanneret, R. Schmidt (meeting yesterday).

Goals:

- Bring together the CERN expertise on collimators and absorbers.
 - Confront the requirements with this expertise.
 - Collect ideas on solutions and most urgent studies.

Part of the activity of the LHC Beam Cleaning Study Group.

Our input:

LHC Project Note 277

January 24, 2002 Ralph.Assmann@cern.ch

Preliminary Beam-based Specifications for the LHC Collimators

R. Aßmann, I. Baishev, M. Brugger, H. Burkhardt, G. Burtin, B. Dehning, S. Fartoukh, C. Fischer, E. Gschwendtner, M. Hayes, J.B. Jeanneret, R. Jung, V. Kain, D. Kaltchev, M. Lamont, R. Schmidt, J. Wenninger

Keywords: Collimation, Beam Loss, Machine Protection

Expertise from SL/AP, SL/BI, SL/OP, AC/TCP, TIS/RP, and collaborators.

R. Assmann

Response to our initiative:Strong interest and support(~ 45-50 participants)

We asked for: Short talks (5-15 min) for quick summary of relevant experience and knowledge.

Great support from CERN experts... (all agreed to give a talk)

20 talks ranging from the ISR over the Booster, ISOLDE, SPS, LEP... ... to the LHC.

- Requirements from the Beam Cleaning SG, Machine Protection, impedance, vacuum.
- Materials (from Be, C to fiber reinforced ceramics, Boron Nitride). Beryllium OK?!
- *Technical solutions for handling the LHC beam for injection and dump.*
- Experience with damage and fatigue.
- Computer tools.
- Possibilities for experimental tests.

Talks will be put on web. Valuable archive of CERN expertise...

The Challenge:

Talks explaining the challenge and the specific requirements:

J.B. Jeanneret R. Schmidt C. Fischer R. Assmann

Complemented by talks on impedance and vacuum issues:

D. Brandt N. Hilleret

Step from previous accelerators:

Factor 7	in proton energy				
Factor 100	in stored beam energy				

The powerful LHC beam must be handled in sensitive super-conducting environment!

R. Assmann

Beam and Power Deposition During Regular Operation:

Relax with slower ramp!

Lifetime reductions during machine cycle (ramp, squeeze, ...) and tuning...

Mode	Energy	Duration	Req. min.	Beam	Power
			lifetime	deposition	deposition
	$[\mathrm{TeV}]$	$[\mathbf{S}]$	[h]	[protons/s]	[kW]
Injection	0.45	cont	1.0	0.8×10^{11}	6
		10	0.1	8.2×10^{11}	60
Ramp	0.45-7.00	10	0.1-0.2	$8.2-4.1 \times 10^{11}$	60-465
	0.45	≈ 1	0.006	1.3×10^{13}	1000
Top energy	7.00	cont	1.0	0.8×10^{11}	93
		10	0.2	4.1×10^{11}	465

Most severe: Top energy (up to 0.5 MW) to be absorbed in collimators and downstream material. Dump beam below 0.2 h (top).

Ensure: Keep tolerance for collimation efficiency (~ 100 μm flatness). (important DIFFERENCE to BT absorbers)

Cleaning Efficiency:

Quench levels of magnets require **excellent cleaning of beam halo** from injection all the way to top energy.

Good efficiency with "good" collimators (cannot run with damaged/deformed collimators)! E.g.: tolerance on surface flatness: ~ 100 μ m *mm "mountains" on*

R. Assmann

HERA-p collimators... 6

Failures:

Failure	Beam	Intensit	y Energ	y Transverse	e Impact]	
description	energy	depos	it deposi	t dimensions	duration	Relax with	
	$[\mathrm{TeV}]$	[proton	s] [kJ	$[I] [mm \times mm]$	[ns]	in transfer	
Injection oscillation	0.45	2.6×10	13 187	5 1.0×1.0) 6250		
Asynchronous beam dump	0.45	1.1×10	12 7.	8 5.0×1.0) 275	1	
(all modules)	7.00	2.8×10	¹¹ 31	1 1.0×0.2	2 75		
Asynchronous beam dump	0.45	1.1×10	12 7.	8 5.0×1.0) 275		
(1 out of 15 modules)	7.00	6.0×10	¹¹ 66	7 1.0 \times 0.2	2 150		
About 6 full LHC bunches: - 0.2% of LHC beam - 30% of HERA-p beam - 2200% of LEP2 beam			1e+012 8e+011 6e+011 4e+011	1e+012 8e+011 6e+011 4e+011			
Our goal:	• / • /		2e+011		Runches		
Collimator Jaws that car this beam impact.	1 withsta	nd	οĒ	-10 -5	Duncnes	10	
	R. Assmann			Transvers	se position x [σ_x]	7	

Preliminary summary: (final summary from JBJ, RS, CF, RA)

- Preliminary beam-based requirements presented as a **basis for hardware choices**. (Propose a talk in LCC on this issue in 4 weeks time).
- Several materials appear promising (**Be**, **C**, Boron Nitride, fiber reinforced ceramics?, diamond coating?). Would coating or plating be an option for collimators?
- Worries on materials (toxicity, brittleness, conductivity, **shock resistance, flatness control, dust, thermal expansion, surface cracks,** fatigue). Careful trade-off required.
- Damage mechanics (shock waves, fatigue) are crucial! Tools and expertise available...
- Experimental tests (tests with beam) are mandatory: ISOLDE, SPS?
- Collaborate with **vacuum** group on choice of material!
- **Do not consider constraints from impedance** for now (coating for insulator).
- Think on methods to **find damaged collimator** (tomography, RF, temp., beam based,...).
- Protection of LHC collimators require TCDQ (BT) at 10σ ! Ensure consistency!
- Other concepts: wire septum, non-linear collimation, increased beta functions?

The **damage/deformation and fatigue of collimators** will depend on the **machine running**:

- Collimation depth (aperture)
- Machine protection (beam dump)
- Intensities, bunch schemes
- Beam lifetimes
- Flashes of beam loss (start of ramp)
- Failures

Close **interconnection** between:

accelerator physics operational scenarios machine protection radiation issues collimator hardware design

Beam Cleaning Study Group + further collimation meetings?

R. Assmann