Showering Studies for BLMs

Edda Gschwendtner
• **Idea:**

 detect shower particles outside cryostat induced by beam
 particle losses

 - relation between beam particles and quenchlevels
 - correspondence between particle fluence outside cryostat and quenchlevels

• **Method:**

 ➔ proton loss distribution: most likely position of losses
 misalignment, β_{max}

 ➔ proton loss shower simulation

 ➔ obtain detector signals per lost proton
• proposal for beam loss detectors
 position, corresponding signals for quenchlimit.

With the

• Aim
 ➔ distinguish between 2 beams
 ➔ find out where loss has happened
Proton shower simulation

Geant 3.21

Dispersion Suppressor

- Detailed simulation of magnet geometry, Version 6.3
 MB, MQ, MQM, MQML, MQMC, MQTL,
 MCBCB, MSCBA, MCDO, MCS, BPOM,

- Magnetic field maps for Quadrupoles, Dipoles (Roxie)

Point loss

- Incident angle of 0.25mrad
- Losses in horizontal (QF) and vertical plane (QD) of beam screen
- 150 events with same impact parameters
MQML in Q10

 MQML

beam2
beam1

D
F

left detector
right detector

x
y
z
Typical shower distribution of point-loss in MQML

beam1 impact at -3543cm
shower maximum at ~-3450cm
(~100cm later)

right detector signal

beam impact shower max. z [cm]
Impact of beam1 and beam2, cross-talk...

proposed detector@ -3450cm

Q10

right detector signal

beam1
loss@ -3543cm

beam2
loss@ -3543cm

proposed detector@ -3650cm

Q10

left detector signal

MBB MQML MCBCB MCDO MBA MCS MBB

MBB MQML MCBCB MCDO MBA MCS MBB

6.6x 10^{-5} ch./p/cm^2 6.6x 10^{-5} ch./p/cm^2
• Longitudinal proton loss distribution will modify shower distribution significantly!
Proton loss density in DS

proton loss density in DS with collimators in D2 and D5

lost protons/m/s

distance from IP1 (m)

vertical crossing in IP1
horizontal crossing in IP5
zero crossing in IP1 or IP5