Requirements and Design Criteria for the LHC Collimation System

R. Assmann, CERN-SL

for the LHC Beam Cleaning Study Group:

R. Assmann, M. Brugger, H. Burkhardt, G. Burtin, B. Dehning,
C. Fischer, B. Goddard, E. Gschwendtner, M. Hayes,
J.-B. Jeanneret, R. Jung, V. Kain, M. Lamont, R. Schmidt,
E. Vossenberg, E. Weisse, J. Wenninger, CERN, Geneva;
I. Baishev, IHEP, Protvino, Moscow Region;
D. Kaltchev, TRIUMF/University of Victoria, Victoria

…including colleagues from connected activities (beam dump).
Contents

1) The challenge
 High stored energy and energy density
 Super-conducting environment
 Efficient and tight collimation

2) Irregular proton losses
 Dump failure modes
 Beam impact at collimators

3) Regular proton losses
 Running at the quench limit (intensity and beam lifetime)
 Heat load
 Efficiency and imperfections (halos)

4) Outlook
What is collimation for the LHC?

Blocks of material that are put closest to the beam such that:

99.9 % of protons lost (e.g. with 1 h beam lifetime at 7 TeV) are captured in the collimators.

Less than 0.1 % of protons lost can escape and can impact in the SC magnets, which otherwise quench.

Less than 0.002 % of the stored beam intensity can be lost at any place in the ring other than the collimators, because otherwise magnets could be damaged.

Any beam loss is detected immediately at the collimators and the beam is dumped within 2-3 turns.

(top energy)
Challenge: High Stored Energy 1

Number of bunches: 2808
Bunch population: 1.1e11
Bunch spacing: 25 ns

| Top energy: |
| --- | ---
| Proton energy: | 7 TeV
| Transv. beam size: | 0.2 mm
| Bunch length: | 8.4 cm
| Stored beam energy: | 350 MJ

| Injection: |
| --- | ---
| Proton energy: | 450 GeV
| Transv. Beam size: | 1 mm
| Bunch length: | 18.6 cm

Factor 1000 in transverse energy density!

Physics Potential = Energy and Luminosity:

\[
L = \rho_e \frac{f_{rev} N_p}{4E_b} \sqrt{d_x d_y}
\]

- \(d = \) demagnification
- \(N_p = \) protons per bunch
- \(f_{rev} = \) revolution freq.
- \(E_b = \) beam energy

Increase transverse energy density
Challenge: High Stored Energy 2

If you are interested in material damage:

Energy density (3 LHC bunches) = Energy density (full HERA-p beam)

If your are interested in heat load:

Energy (20 LHC bunches) = Energy (full HERA-p beam)

= Energy to melt 3 kg Copper

If you are interested in real things:

Energy (2 full LHC beams) = 7% of energy stored in an airplane carrier at 30 knots

K.H. Mess

Picture of damaged SLC collimator
Challenge: High Stored Energy 3

Destruction limits

<table>
<thead>
<tr>
<th>Case</th>
<th>Destruction threshold [nominal intensity]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Copper</td>
<td>1.9e-3, 1.8e-5</td>
</tr>
<tr>
<td>Beam screen</td>
<td>1.6e-3, 7.0e-5</td>
</tr>
<tr>
<td>S.C. coil</td>
<td>4.2e-3, 14.0e-5</td>
</tr>
</tbody>
</table>

This made the reconsideration of present collimator jaw materials necessary!

<table>
<thead>
<tr>
<th>5-12 nominal bunches at injection</th>
<th>0.05-0.4 nominal bunches at top energy</th>
</tr>
</thead>
</table>

No safe operating point for LHC (top) without protection!
Challenge: Super- Conducting Environment

Proton losses into cold aperture

Local *heat* deposition

Magnet can *quench*

Illustration of LHC dipole in tunnel

<table>
<thead>
<tr>
<th>Energy [GeV]</th>
<th>Loss rate (10 h lifetime)</th>
<th>Quench limit [p/s/m] (steady losses)</th>
<th>Cleaning requirement</th>
</tr>
</thead>
<tbody>
<tr>
<td>450</td>
<td>8.4e9 p/s</td>
<td>7.0e8 p/s/m</td>
<td>92.6 %</td>
</tr>
<tr>
<td>7000</td>
<td>8.4e9 p/s</td>
<td>7.6e6 p/s/m</td>
<td>99.91 %</td>
</tr>
</tbody>
</table>

Capture (clean) lost protons before they reach cold aperture!

Required efficiency: ~ **99.9 %** *(assuming losses distribute over 50 m)*

Control *transient losses (10 turns)* to ~1e-9 of nominal intensity (top)!
Challenge: Tight and Efficient Collimation 1

Collimator settings:
- 5 - 6σ (primary)
- 6 - 9σ (secondary)

σ ~ 1 mm (injection)
σ ~ 0.2 mm (top)

Number of protons reaching 10σ:
10^{-4} of p at 6σ

Reminder:
Normalized available LHC aperture specified to be 10σ at injection (arcs) and top energy (triplets).

+ 3-4 mm for closed orbit, 4 mm for momentum offset, 1-2 mm for mechanical tolerances
Challenge: Tight and Efficient Collimation 2

Two LHC insertions dedicated to cleaning:

IR3 Momentum cleaning
1 primary
4 secondary

IR7 Betatron cleaning
4 primary
16 secondary

Two-stage collimation system.

50 movable collimators for high efficiency cleaning
+ other absorbers for high amplitude protection
Contents

1) The challenge
 High stored energy and energy density
 Super-conducting environment
 Efficient and tight collimation

2) Irregular proton losses
 Dump failure modes
 Beam impact at collimators

3) Regular proton losses
 Running at the quench limit (intensity and beam lifetime)
 Heat load
 Efficiency and imperfections (halos)

4) Outlook
Irregular proton losses

- Equipment failures
- Equipment errors
- Operational errors

Danger of damage to accelerator components.

In particular: Collimators close to beam!

Beam dump: Designed to extract beam within 2 turns.
Pulse rise time of 3 µs (dump gap).

Failure modes:

- **Total failure** of dump or dump trigger (> 100 years)
- Dump action **non-synchronous** with dump gap
- Dump action from 1 of 15 modules, others retriggering after 1.3 µs.

Difficult to predict
Assume at least once per year!

Magnet failures: V. Kain et al, MOPLE032
Abnormal dump actions

Kicker MKD

Kick $[\mu\text{rad}]$

- Nominal
- All kicker modules
- One kicker module pre-fire with retriggering after $1.3\ \mu\text{s}$

Downstream offset [σ]

- One module pre-fire

RA EPAC02
Abnormal dump actions

Beam abort asynchronous with abort gap:

Total: 6 bunches over 5 σ
Peak: 1.5 bunches in 1 σ

1 module pre-fire with re-triggering of 14 after 1.3µs:

Total: 20 bunches over 5 σ
Peak: 6 bunches in 1 σ
Abnormal dump actions

One module pre-fire depends on details of dump kicker design (pulse form, number of magnets, re-trigger design)!

Possible remedies are being studied (require modifications to dump system).

Collimators should withstand this impact without damage!

Consequences for choice of material, jaw length, operation, exchange facilities, setting of TCDQ (10σ), distribution of radioactivity, …

Low Z collimator material!
1) The challenge
 High stored energy and energy density
 Super-conducting environment
 Efficient and tight collimation

2) Irregular proton losses
 Dump failure modes
 Beam impact at collimators

3) Regular proton losses
 Running at the quench limit (intensity and beam lifetime)
 Heat load
 Efficiency and imperfections (halos)

4) Outlook
Regular proton losses

Proton losses observed in routine operation (include operational variation of beam lifetime)!

Studies for system with Al/Cu jaws.

Desirable:

1) Possibility to run at quench limit ($\tau = 0.2$ h for top energy)

2) Accept low lifetimes during cycle

<table>
<thead>
<tr>
<th>Mode</th>
<th>T [s]</th>
<th>τ [h]</th>
<th>R_{loss} [p/s]</th>
<th>P_{loss} [kW]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Injection</td>
<td>cont</td>
<td>1.0</td>
<td>0.8×10^{11}</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>0.1</td>
<td>8.2×10^{11}</td>
<td>60</td>
</tr>
<tr>
<td>Top energy</td>
<td>cont</td>
<td>1.0</td>
<td>0.8×10^{11}</td>
<td>93</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>0.2</td>
<td>4.1×10^{11}</td>
<td>465</td>
</tr>
</tbody>
</table>

Additional requirements for collimator hardware!
Two stage collimation system

Betatron cleaning: 4 primary and 16 secondary collimators
Optimize phase advance for minimal secondary halo

Adapted from J.B. Jeanneret
Improving our confidence in predictions

Two scattering routines used: K2 and STRUCT

Tracking programs: Linear transfer matrices DIMAD SIXTRACK

Effects being considered: Scattering physics Chromatic effects Non-linear fields (diffusion)

M. Hayes et al, WEPLE044 F. Zimmermann et al, WEPLE048 R. Assmann et al, MOPLE030

Same order of magnitude results Factor 5 disagreement to be understood.

System requires detailed understanding of 7 TeV proton interaction in matter.
Secondary and tertiary beam halos

Scattering in collimator jaws (at 6/7 σ)

Transverse scattering angles + momentum loss

Halo at zero dispersion

Halo at max dispersion

Local inefficiency [1/m]:
Integrate halos above 10σ
Divide by dilution length (50 m)
Tertiary halo in phase space

Halo generated at specific phase space locations!

Input to studies of **local loss distribution** (dilution, expected signals of Beam Loss Monitors BLM).

E. Gschwendtner et al, THPRI083
Running at the quench limit for $\tau = 0.2$ h

Trade-off for given quench limit between:

- Inefficiency
- Allowed intensity
- Minimum allowable lifetime
Inefficiency with imperfections

Value of imperfections for 50% increase (each) in inefficiency:

<table>
<thead>
<tr>
<th>Error</th>
<th>Tolerance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Orbit</td>
<td>0.6 σ</td>
</tr>
<tr>
<td>Beta beat</td>
<td>8%</td>
</tr>
<tr>
<td>Longitudinal angle $\Delta L/L$ (prim)</td>
<td>50 μrad</td>
</tr>
<tr>
<td>Surface flatness (prim)</td>
<td>10 μm</td>
</tr>
<tr>
<td>$\Delta L/L$ (sec)</td>
<td>20%</td>
</tr>
<tr>
<td>Surface flatness (sec)</td>
<td>25 μm</td>
</tr>
<tr>
<td>Setting accuracy (prim)</td>
<td>-1.0/+0.5 σ</td>
</tr>
<tr>
<td>Setting accuracy (sec)</td>
<td>$\geq \pm 0.5 \sigma$</td>
</tr>
</tbody>
</table>

R. Assmann et al, MOPLE030

Preliminary estimates:

Combined effect can make tolerances more severe!

Collimators need not only be robust, but also precise!

Beam 5σ (1mm)
Beam impact requirements analyzed (failure modes and operational requirements) for a robust and efficient LHC collimation system!

Now engineering design starting: appropriate materials (low Z), lengths, mechanics, cooling, damage and fatigue analysis, tolerances, ...

Additional concerns: Impedance, vacuum, local e-cloud, radiation impact.

Two cleaning insertions, each two-stage, defined since years for high efficiency cleaning.

Accelerator physics and operational analysis is ongoing:
Overall tolerance specifications (flatness, required adjustments, orbit and optics requirements, …). Operational optimization. Realistic diffusion and aperture models (BLM signals). Chromatic effects. Cross-checks of different scattering and tracking tools.
The performance of the collimation system can limit...

... **peak luminosity** due to maximum allowed intensity.

... **integrated luminosity** due to beam aborts and repair time.

This we want to prevent with the best possible design!

Collimation is a performance-critical topic

from day 1 of LHC physics!

It pushes **accelerator physics understanding of beam halo** and **material science** to new frontiers!
Additional slides
Inefficiency versus settings
Inefficiency versus imperfections

- Beta beat
- Non collinearity
- Orbit
- Jaw length
Scattering physics
Multi-turn properties and impact parameter

- **Primary impact parameter**

- **Survival half time**

- **Survival after impact**

- **Proton number vs turn**