The Project on LHC Collimation

R. Assmann, CERN-SL

http://www.cern.ch/lhc-collimation

http://www.cern.ch/lhc-collimation-project
1. **Why must we worry about collimation?**

2. The collimation project

3. **Changes under study – What can you expect?**

4. **Required input from you**
The High Power LHC Beam

Number of bunches: 2808
Bunch population: 1.1e11
Bunch spacing: 25 ns

Top energy:
Proton energy: 7 TeV
Transv. beam size: 0.2 mm
Bunch length: 8.4 cm
Stored beam energy: 350 MJ

Injection:
Proton energy: 450 GeV
Transv. Beam size: 1 mm
Bunch length: 18.6 cm

Factor 1000 in transverse energy density!

At 0.1 % of its intensity the LHC will enter new territory!

Note: HERA collimators have been strongly damaged!

RA; IR7 Pos 6/12/02
The Real Question: What Luminosity?

Physics Potential = Energy and Luminosity:

\[L = \rho e \frac{f_{\text{rev}} N_p}{4 E_b} \sqrt{d_x d_y} \]

- Rate of quenches (cleaning efficiency): decrease bunch intensity, number of bunches
- Tight tolerances in the collimation system: increase β^*
- Protection of elements close to the beam (collimators, ...): decrease bunch intensity, number of bunches

The luminosity (transverse energy density) in the LHC may be limited by:

We need to do a much better job than Tevatron, HERA, RHIC!

RA; IR7 Pos 6/12/02
Material Damage

Destruction limits

<table>
<thead>
<tr>
<th>Case</th>
<th>Destruction threshold [nominal intensity]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Copper</td>
<td>1.9e-3 1.8e-5</td>
</tr>
<tr>
<td>Beam screen</td>
<td>1.6e-3 7.0e-5</td>
</tr>
<tr>
<td>S.C. coil</td>
<td>4.2e-3 14.0e-5</td>
</tr>
</tbody>
</table>

This made the reconsideration of present collimator jaw materials necessary! We cannot use Copper!

No safe operating point for LHC (top) without protection!

5-12 nominal bunches at injection

0.05-0.4 nominal bunches at top energy
Super- Conducting Environment

Proton losses into cold aperture

- Local heat deposition
- Magnet can quench

Illustration of LHC dipole in tunnel

<table>
<thead>
<tr>
<th>Energy [GeV]</th>
<th>Loss rate (10 h lifetime)</th>
<th>Quench limit [p/s/m] (steady losses)</th>
<th>Cleaning requirement</th>
<th>Control transient losses (10 turns) to ~1e-9 of nominal intensity (top)!</th>
</tr>
</thead>
<tbody>
<tr>
<td>450</td>
<td>8.4e9 p/s</td>
<td>7.0e8 p/s/m</td>
<td>92.6 %</td>
<td></td>
</tr>
<tr>
<td>7000</td>
<td>8.4e9 p/s</td>
<td>7.6e6 p/s/m</td>
<td>99.91 %</td>
<td></td>
</tr>
</tbody>
</table>

Capture (clean) lost protons before they reach cold aperture!

Required efficiency: \(\sim 99.9\% \) (assuming losses distribute over 50 m)

RA: IR7 Pos 6/12/02
Concept of LHC Collimation

“Conventional” jaws (blocks of appropriate solid materials).

“Exotic” schemes (e.g. crystal collimation) not foreseen in baseline solution. Unusual mechanical solutions can be envisaged (“consumable” jaws, connected jaws).

Two stage cleaning systems:

1) Primary collimators: Intercept primary halo
 Impact parameter: ~ 1 μm
 Scatter protons of primary halo
 Convert primary halo to secondary off-momentum halo

2) Secondary collimators: Intercept secondary halo
 Impact parameter: ~ 200 μm
 Absorb most protons
 Leak a small tertiary halo
Requirements for Collimator Settings

Reminder: Normalized available LHC aperture specified to be about 10σ at injection (arcs) and top energy (triplets).

+ 3-4 mm for closed orbit, 4 mm for momentum offset, 1-2 mm for mechanical tolerances

Collimator settings:

5 - 6 σ (primary)
6 - 9 σ (secondary)

σ ~ 1 mm (injection)
σ ~ 0.2 mm (top)

Number of protons reaching 10σ:

10^{-4} of p at 6 σ
LHC collimators must be robust and precise!

Survival of jaws with 7 TeV proton impact (no melting, cracks, dust formation, …).

- 2×10^{12} p (2.2 MJ) in 0.5 µs over area of 1 mm (full width) × 0.2 mm (rms)
- 4×10^{12} p (4.5 MJ) in 10 s over area of 0.03 mm (rms) × 0.2 mm (rms)

0.7 MJ to melt one kg Cu

Excellent cleaning inefficiency.

- Local losses $\sim 10^{-5}$ of primary beam halo.
- Deformations of ~ 1.5m long jaws < 25 µm.
- Control/maintain beam-jaw position/angle to ~ 0.1 mm, ~ 60 µrad.
- …

… and available from day 1 of LHC operation (10% intensity still far beyond handled so far)

RA; IR7 Pos 6/12/02
Two Dedicated LHC Insertions

Two warm LHC insertions dedicated to cleaning:

IR3 Momentum cleaning
 1 primary
 6 secondary

IR7 Betatron cleaning
 4 primary
 16 secondary

Two-stage collimation system.

54 movable collimators for high efficiency cleaning, two jaws each + other absorbers for high amplitude protection

Full system: 66 collimator tanks + 12 spares

RA; IR7 Pos 6/12/02
1. Why must we worry about collimation?

2. The collimation project

3. Changes under study – What can you expect?

4. Required input from you
Mandate and Required Schedule

Finalize the design of the LHC collimation system in IR3 and IR7, taking into account all relevant requirements concerning robustness, performance, fabrication, installation, maintenance, machine protection, and beam operation.

Produce prototype collimator tanks for TCP, TCS, and TCL type collimators and verify their performance.

Supervise production and installation of the full system.

Commission the system without and with beam.

Support routine operation.

Demanding schedule:
- End 2003: prototypes
- 2004/05: production
- 2006: installation
- 2007: commissioning
1. Why must we worry about collimation?

2. The collimation project

3. Changes under study – What can you expect?

4. Required input from you
Present Status

Beam scenarios defined: Requirements for LHC collimators specified in detail (published).

Studies of energy deposition started. Material pre-selection: Ti, C, Be, C with Ti coating, BN, Cu, …

Damage/fatigue analysis will start very soon.

Milestone 1: Selection of material and length.

Milestone 2: Final system design (layout, efficiency, optics).

Milestone 3: Detailed mechanical design.

Milestone 4: Prototype and tests (end 2003?!).

RA; IR7 Pos 6/12/02
Route 1: Materials

<table>
<thead>
<tr>
<th></th>
<th>Be</th>
<th>C</th>
<th>BN</th>
<th>Ti</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low Z for survival</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>--</td>
</tr>
<tr>
<td>Experience</td>
<td>+</td>
<td>+</td>
<td>--</td>
<td>+</td>
</tr>
<tr>
<td>Toxicity</td>
<td>--</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Short length</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>Good impedance</td>
<td>+</td>
<td>--</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>No coating</td>
<td>+</td>
<td>--</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>Good vacuum (local e-cloud)</td>
<td>+</td>
<td>--</td>
<td>-</td>
<td>+</td>
</tr>
</tbody>
</table>

No ideal material, no obvious solution!

Detailed studies P. Sievers, A. Ferrari, …
Present estimate (guess) for secondary collimators (see JBJ):

<table>
<thead>
<tr>
<th></th>
<th>Low Z (2denC)</th>
<th>Cu (V6.4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Length of jaw:</td>
<td>100 cm</td>
<td>50 cm</td>
</tr>
<tr>
<td>Tapering:</td>
<td>20 cm</td>
<td>-</td>
</tr>
<tr>
<td>Overhead tank:</td>
<td>20 cm</td>
<td>20 cm</td>
</tr>
<tr>
<td>Remote handling:</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Movable shielding:</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Vacuum ports:</td>
<td>25 cm/side</td>
<td>25 cm/side</td>
</tr>
<tr>
<td>Total (2 side port):</td>
<td>190 cm</td>
<td>120 cm</td>
</tr>
</tbody>
</table>

Possible gain?

For example: 3 secondary collimators (TCS) inside quadrupole

Length for three TCS: 3.1 m (V6.4) ~ 5.2 m

Quadrupoles could move by ~ 2 m at specific locations (maintain symmetry)!?
Movements even where no collimators are (maintain symmetry of optics)

RA; IR7 Pos 6/12/02
Route 2: Mechanical Engineering

As materials cannot be tested anyway for LHC densities:
Assume jaws are broken and change jaw in situ ("repairable" collimator):

Good also for finding bad collimators!

Adjust collimator gap, angle beam-jaw, rotation with tight tolerances (complicated)!

Estimate rate of jaw consumption (should hold all run)!

RA; IR7 Pos 6/12/02
Route 3: Operationally Robust System

Concept: Add up to 12 primary collimators to close phase space to oscillations (0, 45, 90, 135 degree).

Secondary collimators can never become primary collimators (excluding local IR7/IR3 errors).

Insensitive to orbit, beta beat errors. More relaxed tolerances for jaw properties.

Secondary collimators can be made simple, as they are always protected by primary collimators.

Most likely not possible any more due to length (phase advance) limitations!
You should expect

Changes in magnet positions of up to 2 m, even where no collimators are. This is a guess and can become larger!

A few additional secondary collimators to close the phase space for machine protection (present orbit can reach 10 σ for collimators at $6/7\,\sigma$). A clean spot will not necessarily remain a clean spot.

The ordering and installation of cables for the collimators, once they have been specified. A second installation campaign is needed anyway.

Separate cooling circuits for the collimators? Remote handling? Movable shielding?

Additional requirements from detailed engineering design?

<table>
<thead>
<tr>
<th>Demanding schedule:</th>
<th>end 2003</th>
<th>prototypes</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2004/05</td>
<td>production</td>
</tr>
<tr>
<td></td>
<td>2006</td>
<td>installation</td>
</tr>
<tr>
<td></td>
<td>2007</td>
<td>commissioning</td>
</tr>
</tbody>
</table>
Crash program to freeze IR7?

Thorough study:
- Decide material by July 03.
- Decide remote handling: July 03.
- First rough design: July 03.
- Know length.
- Redesign IR7 optics/coll system: Oct 03
 (3 months for +- 1m changes)

System with optimal performance.

Crash program:
- Guess maximum length required per collimator (e.g. 3 m).
- Match "placeholder" optics that should accommodate any final design. (Mar 03)

Pay with cleaning efficiency.

RA; IR7 Pos 6/12/02
What we need from you:

Feedback on the constraints from your side:

Scheduling, design choices, installation, space constraints, …
References

CERN-LHC-PROJECT-REPORT-599: REQUIREMENTS FOR THE LHC COLLIMATION SYSTEM.

CERN-LHC-PROJECT-REPORT-598: EFFICIENCY FOR THE IMPERFECT LHC COLLIMATION SYSTEM.

LHC-PROJECT-NOTE-293: The consequences of abnormal beam dump actions on the LHC collimation system by: Assmann, R; Goddard, B; Vossenberg, E; Weisse, E; (2002)

LHC-PROJECT-NOTE-282: Summary of the CERN Meeting on Absorbers and Collimators for the LHC by: Assmann, R; Fischer, C; Jeanneret, J B; Schmidt, R; (2002)

http://www.cern.ch/lhc-collimation