

LHC Collimators for Phase 1

Effects of the 450GeV accident case (TT40 experiment) on the jaw metal support (intermediate report)

LCWG meeting 12/09/2005

Alessandro Bertarelli Alessandro Dallocchio

Outline

- TT40 test results
- Preliminary interpretation
- Simplified "didactic" model
- Actual model
- Outlook and conclusions

Controls on prototype #2 after TT40 test (5 3.2x10¹³ p shots plus many more at lower intensity) ...

- No sign of mechanical damage on both C/C and graphite jaw (in agreement with calculations).
- No permanent deformation of jaws.
- Permanent bending of metal support (~300÷350 μm)

No in-depth calculations were done so far on the metal support for the accident cases (all focus on the jaws) ... this has to be reconsidered!!

Temperature profile after 7.2 µs (5 mm offset) "hottest" cross-section

A simplified theory to justify permanent bending deformation ... (1)

- The metal support is free to expand, but because of the rapidity of the thermal shock it acts "as if" no expansion is allowed ⇒ compression stresses arise ...
- For copper a ΔT=70°C with prevented expansion leads to σ_z÷-EαΔT≅-140MPa. This is well above yield strength of annealed OFE-Cu (~50 MPa) ⇒Plastic compressive deformation of 3mm Cu plate (and partially Cu pipes) (ε_z<0) ⇒Bending of the support away from the beam!

A simplified theory to justify permanent bending deformation ... (2)

- Vibrations are induced. Can successive tensile stresses lead to a "counter-plasticization" and positive permanent strains?
- An in-depth coupled thermo-mechanical transient elastoplastic analysis is necessary!!
- Unfortunately such a non-linear analysis is very time-consuming
 - Shot duration 7 μ s \Rightarrow calculation time-step \leq 1 μ s
 - Low flexural eigen-frequencies $\Rightarrow \sim 15 \text{ ms}$
 - At least several periods must be studied \Rightarrow time-span > 0.1 s
 - Number of calculation substeps > 150000 \Rightarrow CPU time ~15 s/substep \Rightarrow
 - > 25 days of calculation for a full model
 - A. Bertarelli A. Dallocchio TS-MME

A simplified model is first used to understand the "basics" of the phenomenon and get results in a short time ...

Results for the simplified didactic model

Results for the simplified didactic model

Results for the simplified didactic model (2)

Results for the simplified didactic model (3) What happens if a fully elastic model is used?

Results for the simplified didactic model (3)

What happens if a fully elastic model is used?

3-D full model of the metal support of TT40 prototype

TT40 prototype simulation (i.e. Cu-OFE for pipes and plate, Steel for C-bar)

Actual energy distribution from FLUKA runs (linearly increasing during 7.2µs)

Elasto-plastic behavior for all materials

Results for the 3-D full model (analysis stopped at 40ms)

Results for the 3-D full model (analysis stopped at 40ms)

after some millisec.

Results for the 3D model ...

- Unfortunately after 40 ms (i.e. ~8 days CPU time) it is only possible to state that the permanent deformation is "qualitatively" similar to the measured one, but no prediction can be done on the quantity ...
- But the permanent deformation has long been stabilized ...
- We decided then to force the system to converge to its final static value by putting to zero the inertial term (time integration effects turned off)

Results for the 3-D full model

When the dynamics effects finally disappear \Rightarrow $F_{elast} = F_{plast}$

The calculated displacement well matches the measured deformations both in absolute value (357 μm) and in shape

223E-05	.377E-04	.777E-04	.118E-03	.158E-03	.198E-03	.237E-03	.277E-03	.317E-02	.357E-03

Results for the 3-D full model (TT40 replica)

A certain degree of plasticization is found also on pipes (though here in Cu-OFE) ⇒

Analysis of new Glidcop/CuNi solution is necessary!

Results for the 3-D full model (Series production)

Results for the 3-D full model (Series production)

Results for the 3-D full model (Series production)

Conclusions and outlook

- A preliminary "quasi-static" theory predicts a permanent bending away from the beam. Confirmed by a simplified model
- TT40 3D full model gives permanent deformations after 1 full shot (5mm i.p.) compatible with those measured (~350 μm).
- The substitution of OFE-Cu with Glidcop for the Cu-plate seems the best solution (higher elastic limit).
- Analysis of the series version shows a limited degree of plasticization on CuNi pipes.
- Large in-beam elastic deflection (2 mm) and permanent deformation of ~16 μm
- Cumulated damage not easy to assess. It should not increase linearly due to material strain-hardening.