On rf-finger heating and trapped mode damping in LHC collimator

Alexej Grudiev CWG meeting 14.02.05

Distribution of rf-losses on the rf-fingers due to longitudinal mode at 1.247 GHz

Losses in CuBe and Ag-coated rf-fingers

	CuBe2	Ag
σ [1/Ωm]	1.2x10 ⁷	6.1x10 ⁷
Q	785	892
P _{total} [W]	28	32
P _{rf-fing} [W]	3.5 (12.4%)	2 (6.2%)
P _{rf-fing#1} [W]	0.3 (1%)	0.16 (0.5%)
P _{rf-fing#4} [W]	0.08 (0.3%)	0.05 (0.15%)
P _{rf-fing#8} [W]	0.05 (0.2%)	0.03 (0.1%)

Ag-coating is 5µm thick what is "much" bigger than skin-depth in Ag at 1.247 GHz which is 2µm

Effect of rf-finger sliding contact resistance

R_c

Surface impedance of a good conductor:

 $Z_s = (1+i)/\sigma\delta$ Resistance of a stripe of size L x d: R = Re{Z_s} L/d

at 1.25 GHz

$$R_{ss} = 1/(10^{6} \cdot 15 \cdot 10^{-6}) \cdot 150/(50 \cdot sin6^{\circ})$$

$$= 2 \Omega$$

$$R_{Ag} = 1/(6 \cdot 10^{7} \cdot 2 \cdot 10^{-6}) \cdot 150/3$$

$$= 8 m\Omega$$

$$R_{c} < 7.5 m\Omega$$

Contact resistance R_c is mach smaller than the equivalent surface resistance $(R_{ss}+R_{Ag})/2$

Damping of transition modes

Parameters of the dangerous mode

SiC ring 11x6 mm at 2 GHz ε = 15; tanδ = 0.5 μ = 1 4S60 ring 3x3 mm at 1.2 GHz ε = 12 + i7 μ = 1.6 + i9

	f [GHz]	Q
No damping	1.247	892
SiC 11x6	1.218	17
4S60 11x6	-	~1
4S60 6x6	-	~1
4S60 3x3	1.246	8

