TCS Loading in IR7

energy deposition under asynchronous dump for TCSG.A6L7

A. Presland (AB/ABT/EET)

Introduction

- Motivation
 - prediction of ΔT and total load w.r.t. damage limits
 - graphite jaws
 - copper cooling
- Scope
 - realistic asynchronous dump distribution (from Stefano)
 - detailed TCSG geometry (the prototype used in IR7)
 - simple adiabatic model for ΔT calculation
- Simulation settings
 - fine mesh around impact positions
 - avoids "dilution" of energy during scoring (50 micron in x,y)
 - factor 10 effects observed going from 500 to 50 micron

Input Data

- Proton distributions
 - 23 bunchs
 - (x,y,z) and (x',y') at TCSG.6R7 face
 - 20K p+/bunch (460K total)

Simulation

- TCDQ removes swept beam beyond 10σ
 - outer 3 bunches don't reach TCSG
 - truncates some remainder bunches
- Simulate 20 innermost bunches
 - separate run for each bunch
 - 10 σ cut applied at runtime
 - assumed σ = 275.69 microns as previously
- Output
 - outputs summed to give expected full sweep
 - output data are per primary proton (post-process)

Fluka output

XY sectional views of raw fluka output (GeV/cm³ per p⁺) for the whole assembly (left) and a fine meshed (50 micron) area in the graphite around the impact area

Post-processing (1)

- MatLab used to post-process data.
 - Input data
 - GeV/cm³ per proton in a Cartesian mesh
 - Scaling
 - scale to expected 1.1×10¹¹ protons per bunch
 - adjust for TCDQ scraping (32.90%)
 - Processing
 - convert to J/cm³
 - integrate per material region (total load)
 - locate positions of max deposit per material region
 - create profiles intercepting max in each coordinate

Post-processing (2)

- ΔT calculation
 - takes scaled J/cm³ data as input
 - employs temperature dependant specific heats (°C) $c_p^{graph}(T) = 528.75 - 205.9T^{1/3} + 154.21T^{1/2} - 1.53T + 9.15 \times 10^{-5}T^2$ $c_p^{Cu}(T) = 381.12 + 0.16T - 1.09 \times 10^{-4}T^2$
 - ∆T can be extracted, assuming system is initially at 20°C, by solving numerically the upper limit of

$$\frac{dE}{dV} = \rho \int_{T_0}^{T_0 + \Delta T} c_p(T) dT$$

Results: J/cm³

TCSG6 impacted jaw. Scaled to total number of protons

Results: ΔT

TCSG6 impacted jaw. Scaled to total number of protons

