Ozone production in IR7

Preliminary results

Andy Presland (AB/ABT/EET)

Introduction

- Radiation induced production of O_3 around IP7.
 - dose estimates provided by Fluka
 - assumed 4.1×10^{16} lost protons per year.
 - assumed all Fluka energy loss in air is ionizing.
- Enclosures around regions of high dose (O₃ concentration)
 - enclosures seal the tunnel in areas where the ozone
 - voided independently of the main tunnel
 - air corridor to allow passage of tunnel air towards TU76

Tunnel Section

Energy scorings

- Annual dose (GeV/cm³) based 4800 beam-hours
- Compliant with the standard $10^4 10^5$ Gy/year

Calculation (1)

Fasso et el (1982) LEP Note 379 gives the following differential equation

- I = ionizing energy deposited in air per unit time, in $eVcm^{-3}s^{-1}$
- G = number of ozone molecules formed, in eV⁻¹
- α = dissociation constant for ozone, in s⁻¹
- N = concentration of ozone at time t, in cm⁻³

$$x =$$
 decomposition constant, in eV⁻¹cm³

$$(1.4 \times 10^{-16} \text{ eV}^{-1} \text{ cm}^3)$$

 $(7.4 \times 10^{-2} \text{ eV}^{-1})$

 $(2.3 \times 10^{-4} \text{ s}^{-1})$

- Q = ventilation rate, in cm³s⁻¹
- V = irradiated volume, in cm³
- Integration leads to the following concentration kinetics:

$$N(t) = \frac{IG}{\alpha + kI + Q/V} \left\{ 1 - \exp\left[-\left(\alpha + kI + Q/V\right)\right] \right\}$$

Calculation (2)

- More useful **steady state** formulation in a tunnel
 - average energy , I_{ave} , is deposited per unit time
 - air circulates with speed v ms⁻¹
 - length z of tunnel is irradiated

$$N(z) = \frac{I_{ave}G}{\alpha + kI_{ave}} \left\{ 1 - \exp\left[-\left(\alpha + kI_{ave}\right)z / v\right] \right\}$$

This is a special case of the previous equation where the concentration $N \text{ cm}^{-3}$ increases with distance z traversed and air traverses a length z meters of tunnel in z/v seconds accumulating a concentration N(z) molecules of ozone

Results

• Steady state results for air exiting regions

	Tunnel	Encl. 1	Encl. 2
N _{O3} (ppm)	2.20 × 10 ⁻³	1.378× 10 ⁻¹	1.334 × 10 ⁻¹

- Assumed ventilation rates
 - 36000 m³h⁻¹ for the main tunnel
 - 700 m³h⁻¹ for the enclosures
- Parts per million conversion requires
 - air density of 1.202 kg m⁻³
 - molecular weight of 28.95 g mol⁻¹
 - Avogadro constant N_A = 6.022×10^{23}

Results

- Concentration kinetics using averaged dose
 - assumes 'magic ventilation' where air is not considered to travel to the ventilation point through a radiation environment.
 - only useful to compare growth rates etc

