

Studies of Radiation Damage in Irradiated Graphite Collimator Materials for LHC

A.I.Ryazanov

Task: Irradiation Damage Assessment of LHC Graphite Collimator Materials

• <u>Main aim of studies</u> – to measure the effect of irradiation on physical-mechanical material properties: thermal conductivity, thermal expansion, mechanical properties, electrical resistivity, microstructure change

Objective:

• Determine the effect of PKA carbon atoms energy spectrum near 7 TeV proton beam on physical mechanical properties of graphite collimator materials for LHC – irradiation of graphite by carbon ions with the different energies

Neutron energy spectrum per one 7 TeV proton in graphite on the several penetration depths of proton.

CERN, 19 February, 2007

Investigated Graphite Collimator Materials for LHC

- C-C Composite Graphite REC
- C-C Composite Graphite Material AC
- High Density Graphite Material R4SSO

Measured values

- *d* density
- λ thermal conductivity coefficient (at T < 700°C)
- ρ electrical resistivity (at T < 700°C)
- α thermal expansion coefficient (at T < 700°C)
- σ compression ultimate tensile stress
- Ed dynamic elastic module
- E_s static elastic module
- *a*, *c* lattice constants (X-ray method)

Measurements of Initial Properties of C-C Materials

					1,	1,	a ₄₀₀ ,		Е _{стат} , ГПа		
Материал	Nº	d _k , г/см ³	Е _{дин} , ГПа	r, 10 ⁻⁶ ОМ.м	W/m⋅K 20°C	W/m·K 400°C	10 ⁻⁶ K- 1	s _{сж} ; GPa		a, Å	c, Å
REC (CFC)	1_1	1.77	32.33	4.94	350	150	0.9	76,7		2.463	6.734
REC (CFC)	1_2	1.80	34.25	4.72			0.9	78,5		2.463	6.738
REC (CFC)	1_3	1.74	33.56	5.04			0.9	70,5		2.463	6.742
									12± 0.17		
Среднее		1.77	33.38	4.9			0.9	75,2		2.463	6.738
AC150 (CFC)	2_1	1.77	32.87	5.48	280	170	0.2	71,5		2.463	6.742
AC150 (CFC)	2_2	1.73	33.39	5.91			0.2	63,8		2.463	6.734
AC150 (CFC)	2_3	1.77	31.12	5.62			0.2	65,2		2.463	6.738
									15,3±0, 34		
Среднее		1.76	32,46	5.67			0.2	66,8		2.463	6.738
R4SSO SLG	3_1	1.81	12.9	13.43	95	80	5.3	135,4		2.463	6.761
R4SSO SLG	3_2	1.81	13.1	13.20			4.9	138,5		2.462	6.761
R4SSO SLG	3_3	1.81	12.68	13.40			5	128,3		2.463	6.761
Среднее		1.81	12.9	13.34			5.1	134,4	6,92±0, 53	2.463	6.761

Temperature dependence of thermal conductivity coefficient (1 – REC, 2 – AC150, 3 – R4SSO).

CERN, 19 February, 2007

Temperature dependence of electrical resistivity (1 – REC, 2 – AC150, 3 – R4SSO).

CERN, 19 February, 2007

CERN, 19 February, 2007

Temperature dependence of thermal expansion coefficient of AC 150.

CERN, 19 February, 2007

Temperature dependence of thermal expansion coefficient of R4SSO.

CERN, 19 February, 2007

Temperature dependence of thermal expansion coefficients (1 – REC, 2 – AC150, 3 – R4SSO).

CERN, 19 February, 2007

Investigation of Radiation Induced Deformation

Experimental Measurement of Radiation Induced Deformation

 Φ_{av} – Averaged dpa profile,

- ΔZ Height of step between irradiated and no irradiated area,
- **d** Penetration depth of irradiated sample.

Dose dependence of radiation swelling in SiC

Dose rate dependence of Ion-induced swelling in CVD-SiC

The displacement damage rates were 1×10^{-4} and 1×10^{-3} dpa/s at 333K-873K and 1×10^{-5} dpa/s at 333K with single-beam irradiation. The error bars represent the 96% confidence limits for the Gaussian distribution.

Accelerators of Charge Particles of Russian Research Center "Kurchatov Institute"

• Cyclotron of RRC KI:

protons with energy < 35 MeV, current J < 30 mkAhelium ions He⁴ with energy < 60 MeV, current J < 20 mkAions O¹⁶ with energy < 120 MeV, current J < 5 mkAions C¹² with energy < 80 MeV, current J < 5 mkA

• Van de Graaf Accelerator:

protons with energy < 3 MeV, current J < 25 mkA

Cyclotron of RRC "Kurchatov Institute"

CERN, 19 February, 2007

Generation Rate of Point Defects under Irradiation of Graphite by 10 MeV and 20 MeV Carbon Ions at Dose of Irradiation 4.10E18cm2

CERN, 19 February, 2007

Generation Rate of Point Defects under Irradiation of Graphite by 5 MeV Carbon Ions at Irradiation Dose 5.10E17cm2

Scheme of Irradiation of Graphite Samples

CERN, 19 February, 2007

Picture of Irradiated and Unirradiated Sample Area, Measurement of Radiation Swelling

