Collimator Settings and Maximum Amplitudes of Orbit Oscillations at Beam Dump: First Look

R. Assmann

Reminder:

Available aperture:	Injection Physics	~ 10 σ (arcs) ~ 10 σ (triplet, β *=0.5 m)
Collimator settings: (at inj, squeezed top)	Nominal Assumed Specified	7 / 8.2 σ (prim/sec) 6 / 7 σ > 5/6 σ

For the dump maybe we should assume nominal settings?

MP Philosophy: Error causes beam deteriorationBLM's see irregular beam loss (when?)Beam is dumped within 2-3 turns

Time scale can be down to 10 turns!

Nominal collimator settings:

Oscillations can reach up to 10 σ amplitude (just at ring aperture)

Assumed working point for collimators:

Oscillations can reach up to 9 σ amplitude

Effective collimation depth during cycle:

Collimators not closed during ramp: Bigger hole. Avoid tight tolerances during ramp (collimators create secondary/tertiary halo).

Absolute orbit offset at quad after MKD:

When do we detect beam orbit / emittance degradation?

Absolute orbit offset at quad after MKD:

Maximum amplitudes (orbit):

8.7 mm	(injection)
11 mm	(before squeeze)
4 mm	(physics)

-20% for fast oscillations (sample all phases). These offsets can add to static orbit offset (~ 1 mm).

Improvements possible:

Add collimators to reduce effective collimation depth from 10.5 σ to 8.5 σ for nominal collimator settings (20% reduction).

Special case:

Single module pre-fire.

All beam below 10 σ can make 1 turn and must be dumped (squeezed case)!

Sigmas at quad:

0.32 mm at injection

1.24 mm at top energy