

Chiara Bracco, Ralph Assmann, Stefano Redaelli, Guillaume Robert-Demolaize, Thomas Weiler

Oufline

Data analysis for SPS MDs:
MD1: from 8:00 a.m. $31^{\text {th }}$ October until 8:00 a.m $1^{\text {st }}$ November
MD2: from 8:00 a.m. $7^{\text {th }}$ November until 8:00 a.m $8^{\text {th }}$ November.

* Beam based alignment:
- General description
- Detailed analysis of the procedure adopted during the MDs.
* Tail repopulation:
- Preliminary studies on different tail shapes observed

Beam based alionment

(1)

(2)

(3)

(4)

1) Two jaws retracted (out-switches)
2) One jaw moved in steps towards the beam until losses are recorded by the BLMs \rightarrow sharp edge beam.
3) Second jaw moved in steps towards the beam.
4) Fine alignment (smaller steps).

MDI: first beam based alionment

ABSOLUTE STARTING TIME: 16:43:30 (31st October)

MD2: beam based allioment

ABSOLUTE STARTING TIME: 08:05:14 (7 ${ }^{\text {th }}$ November)

Step by step ollioment (MD1) $1 / 2$

Summarizing table of jaws movement (first part)

	Jaw	In.pos. $[\mathrm{mm}]$	Steps $[\mathrm{mm}]$	Fin.pos. $[\mathrm{mm}]$
1	left	10	5	5
2	left	5	0.5	2.5
3	right	-10	5	-5
4	right	-5	0.5	-2
5	right	-2	0.1	-1.8
6	left	2.5	0.1	2.1

Step by step alligment (MD11) 2/2

\leftrightarrows

Jaws aligned within $20 \mu \mathrm{~m}$ at:
Left 1.81 mm \}eam centre: 0.195 mm Right -1.42 mm ,

Summarizing table of jaws movement (second part)

	Jaw	In.pos. $[\mathrm{mm}]$	Steps $[\mathrm{mm}]$	Fin.pos. $[\mathrm{mm}]$
6	left	2.5	0.1	2.1
7	left	2.1	0.05	2.05
8	right	-1.8	0.05	-1.55
9	left	2.05	0.02	1.85
10	right	-1.55	0.02	-1.47
11	left	1.85	0.01	1.81
12	right	-1.47	0.01	-1.42

Final positions

	Left jaw [mm]	Right jaw [mm]	Beam Centre [mm]
MD1	1.81 mm	-1.41 mm	0.200 ± 0.010
	1.76 mm	-1.37 mm	0.195 ± 0.010
2.27 mm	-1.82 mm	0.225 ± 0.010	
	1.19 mm	-0.79 mm	0.200 ± 0.020
	1.12 mm	-0.77 mm	0.175 ± 0.020
	Left jaw $[\mathrm{mm}]$	Right jaw $[\mathrm{mm}]$	Beam Centre $[\mathrm{mm}]$
MD2	3.73 mm	-3.45 mm	0.140 ± 0.010
	1.49 mm	-1.31 mm	0.090 ± 0.050

Tail repopulation

G.Robert-Demolaize

In 2004 it was observed that the BLM signal doesn't go back instantaneously to zero as expected. An exponential tail of about 30 seconds persists until then the collimator is retracted.
2006 results generally confirm this behaviour.

Such tail repopulation is too fast to be due to diffusion of the core particles.

Possible explanation:

Slight x-y "coupling"!

Particles from the vertical halo.

Best fit for regular tails:

$$
F(t)=a \cdot \exp (b \cdot t)+c \cdot \exp (d \cdot t)
$$

Spike without jaw movements: orbit bump?

Slightly increasing signal about 1 minute after the jaw movement. Fit with a $2^{\text {nd }}$ degree polynomial.

Thereosina sional

Keeping the jaws open the BLM signal increases. Unexpected good agreement between the fit evaluated for this data $k(\dagger)$ and the previous one $y(\dagger)$.

Chance or Physics?????

Tune Change (MD?)

BLM signals corresponding to tune change.

Conclusions

* During the MDs the feasibility of the beam based alignment with an accuracy of $20 \mu \mathrm{~m}$ has been confirmed.
* New tail features, with respect to 2004, have been observed. Preliminary studies highlighted potentially interesting behaviors. Deeper studies are necessary to understand the physical meaning.

