



### Beam loss induced quenches (The latest estimates of quench limits )

### Dariusz Bocian<sup>1</sup> AB-BI and Andrzej Siemko AT-MTM

Acknowledgements: G. D'Angelo, P. Bauer, A. Bonasia, M. Calvi, B. Dehning, J. Kaplon, G. Kirby, L.Oberli, R. Ostojic, H. Prin, P. Pugnat, R. Van Weelderen

<sup>1</sup> H. Niewodniczański Institute of Nuclear Physics PAN, Krakow, Poland

CERN, July 17, 2006



### Outline



#### Motivation

#### Thermodynamics of magnet structure

- Magnet characteristic
- Heat transport in the magnets
- Characteristic of superconducting cables and coils
- Free volume calculation

### Network Model

- Electrical equivalent
- Superconducting cable and coil models
- Results of the simulation
- Validation of the model
  - Measurements in SM 18
  - Evaluation of the network model quality
- "Beam loss" simulation
- Summary and outlook



Motivation



- Quench is transition of the superconductor from the superconducting to the normal state. Such a transition invariably occurs if one of the three parameters: temperature, magnetic field or current density, exceeds a critical value.
- Quench limit calculation in terms of external energy deposition is vital for accelerators making use of superconducting magnets
- These studies are important for the LHC operation and efficiency of magnet protection system
- BLM calibration
- Design and operation of collimators





### Thermodynamics of magnet structure

### Magnet characteristic

Heat transport in the magnets Characteristic of cables and coils Free volume calculation

CERN, July 17, 2006





### Magnets chracteristic LHC dipole magnets cross section





CERN, July 17, 2006





### Thermodynamics of magnet structure

# Magnet characteristic Heat transport in the magnets Characteristic of cables and coils Free volume calculation

CERN, July 17, 2006



### Steady state heat transport in the magnet





CERN, July 17, 2006



A heat transfer in the main dipole. Arrows indicate the radial path of the heat transfer in the magnet.



### Heat transfer in the magnets



 Heat transfer from the conductor to the cold source define the temperature margin
Electrical insulation is the largest

thermal barrier at 1.9 K against cooling





### Heat transfer in the magnets





### A simple sketch of the heat transfer in the quadrupole

at T=1.9 K (left) and T=4.5K(right).

CERN, July 17, 2006





### Thermodynamics of magnet structure

# Magnet characteristic Heat transport in the magnets Characteristic of cables and coils Free volume calculation

CERN, July 17, 2006



### Superconducting cable





CERN, July 17, 2006



### SC cables characteristic



| Strand type | diameter (mm) | A-strand(mm <sup>2</sup> ) | r=Cu/Sc |
|-------------|---------------|----------------------------|---------|
| 1           | 1.065         | 0.891                      | 1.65    |
| 2           | 0.825         | 0.535                      | 1.95    |
| 5           | 0.480         | 0.181                      | 1.75    |
| 6           | 0.740         | 0.430                      | 1.25    |

| Cable type | Strand type | #strands | A-cable (mm2) | Cu (mm2) | NbTi (mm2) |
|------------|-------------|----------|---------------|----------|------------|
| 1          | 1           | 28       | 24.94         | 15.53    | 9.41       |
| 2 & 3      | 2           | 36       | 19.24         | 12.72    | 6.52       |
| 4 & 7      | 5           | 36       | 6.51          | 4.15     | 2.37       |
| 5          | 5           | 34       | 6.15          | 3.91     | 2.24       |
| 6          | 6           | 22       | 9.46          | 5.26     | 4.20       |
| corr-1     |             |          | 0.11          | 0.09     | 0.02       |
| corr-2     |             |          | 0.21          | 0.17     | 0.04       |
| corr-3     |             |          | 0.69          | 0.42     | 0.26       |
| corr-4     |             |          | 1.30          | 0.80     | 0.50       |



### Cable characteristic



|                                | Units | Cable 1 | Cable 2 | Cable 3 | Cable 4 | Cable 5 | Cable 6 | Cable 7 |
|--------------------------------|-------|---------|---------|---------|---------|---------|---------|---------|
| Strand diameter                | mm    | 1.065   | 0.825   | 0.825   | 0.48    | 0.48    | 0.74    | 0.48    |
| Number of strands              |       | 28      | 36      | 36      | 36      | 34      | 22      | 36      |
| Average r=Cu/NbTi              |       | 1.65    | 1.95    | 1.95    | 1.75    | 1.75    | 1.25    | 1.75    |
| Keystone angle                 | deg   | 1.25    | 0.9     | 0.9     | 0.91    | 0.9     | 1.72    | 0.91    |
| Cable width (bare)             | mm    | 15.1    | 15.1    | 15.1    | 8.8     | 8.3     | 8.3     | 8.8     |
| Cable mid-thickness (bare)     | mm    | 1.9     | 1.48    | 1.48    | 0.84    | 0.845   | 1.275   | 0.84    |
| Cable inner thickness (bare)   | mm    | 1.7353  | 1.3614  | 1.3614  | 0.7701  | 0.7798  | 1.1504  | 0.7701  |
| Cable outer thickness (bare)   | mm    | 2.0647  | 1.5986  | 1.5986  | 0.9099  | 0.9102  | 1.3996  | 0.9099  |
| Transposition pitch            | mm    | 115.00  | 100.00  | 100.00  | 66.00   | 66.00   | 66.00   | 66.00   |
| Radial insulation thickness    | mm    | 0.15    | 0.15    | 0.13    | 0.08    | 0.08    | 0.08    | 0.08    |
| Azimuthal insulation thickness | mm    | 0.12    | 0.13    | 0.11    | 0.08    | 0.08    | 0.08    | 0.08    |
| Cable width (ins.)             | mm    | 15.4    | 15.4    | 15.36   | 8.96    | 8.46    | 8.46    | 8.96    |
| Cable thickness (ins.)         | mm    | 2.14    | 1.74    | 1.70    | 1.00    | 1.005   | 1.435   | 1.00    |
| Cable inner thickness (ins.)   | mm    | 1.9720  | 1.6190  | 1.5794  | 0.9288  | 0.9386  | 1.3080  | 0.9288  |
| Cable outer thickness (ins.)   | mm    | 2.3080  | 1.8610  | 1.8206  | 1.0712  | 1.0714  | 1.5620  | 1.0712  |
| Cable length                   | m     | 460     | 740     | 740     | 740     | 775     | 710     | 540     |

CERN, July 17, 2006





0.25















**MQY** magnetic field distribution





Photo of the MQY magnet cross-section



### MQM coil





MQM magnet drawing

MQM magnetic field distribution





### Thermodynamics of magnet structure

# Magnet characteristic Heat transport in the magnets Characteristic of cables and coils Free volume calculation

CERN, July 17, 2006



#### Free volume calculations



#### Free volume is a space inside insulated superconducting cable which can be penetrated by the helium.



Superconducting cable sketch

$$V_2 = \frac{m_{NbTi}}{\rho_{NbTi}} + \frac{m_{Cu}}{\rho_{Cu}}$$

where

mNbTi – is the NbTi alloy mass, mCu – is the Cu mass, rNbTi - is the NbTi alloy density, rCu - is the Cu density. The calculation of free volume is based on the difference of the volume calculated from the cable dimensions and volume calculated from the mass and density

 $V_1 = \frac{a+b}{2} \cdot l_1 \cdot \cos\left(\frac{\alpha}{2}\right) \cdot d$ 

where

- a is the cable inner thickness,
- b is the cable outer thickness,
- l is the cable width,
- a is the keystone angle,
- d is the cable (sample) length,

#### **Including insulation**

$$V_2 = \frac{m_{NbTi}}{\rho_{NbTi}} + \frac{m_{Cu}}{\rho_{Cu}} + \frac{m_{ins}}{\rho_{ins}}$$



### Free volume calculation - DATA



|         | Units             | ρ <sub>Cu</sub> | ρ <sub>NbTi</sub> | ρ <sub>Apical</sub> |
|---------|-------------------|-----------------|-------------------|---------------------|
| Density | g/mm <sup>3</sup> | 0.00893         | 0.006138          | 0.00142             |

|                              | Units | Cable 1 | Cable 2 | Cable 3 | Cable 4 | Cable 5 | Cable 6 | Cable 7 |
|------------------------------|-------|---------|---------|---------|---------|---------|---------|---------|
| Insulation thickness layer 1 | mm    | 0.0508  | 0.0508  | 0.0508  | 0.025   | 0.025   | 0.025   | 0.025   |
| Insulation thickness layer 2 | mm    | 0.0508  | 0.0508  | 0.0375  | 0.025   | 0.025   | 0.025   | 0.025   |
| Insulation thickness layer 3 | mm    | 0.0686  | 0.0686  | 0.0558  | 0.056   | 0.056   | 0.056   | 0.056   |

|                                                             | Units | Cable1  | Cable2 & 3 | Cable4 & 7 | Cable5 | Cable6 |
|-------------------------------------------------------------|-------|---------|------------|------------|--------|--------|
| Sample length                                               | mm    | 69.3    | 67.3       | 68.9       | 61.9   | 60.8   |
| Sample weight                                               | g     | 13.9128 | 10.7318    | 3.6242     | 3.0816 | 4.4095 |
| $m_{NbTi}$ = $m_{tot}$ /(r* $\rho_{Cu}$ / $\rho_{NbTi}$ +1) | g     | 4.0914  | 2.7969     | 1.0220     | 0.8690 | 1.5644 |
| m <sub>Cu</sub> =m <sub>tot</sub> -m <sub>NbTi</sub>        | g     | 9.8214  | 7.9349     | 2.6022     | 2.2126 | 2.8451 |
| $m_{Apical}$ = $\rho_{Apical}$ * $V_{Apical}$               | g     | 0.537   | 0.509      | 0.184      | 0.157  | 0.162  |

CERN, July 17, 2006



### Free volume: **RESULTS**



|                                              | Units           | Cable1 | Cable2 & Cable3 | Cable4 & Cable7 | Cable5 | Cable6 |
|----------------------------------------------|-----------------|--------|-----------------|-----------------|--------|--------|
| Volume0 <sup>*</sup> (strand) (bare)         | mm <sup>2</sup> | 25.789 | 20.103          | 6.742           | 6.344  | 9.757  |
| Volume1 <sup>*</sup> (m,p) (bare)            | mm <sup>2</sup> | 25.489 | 19.974          | 6.646           | 6.290  | 9.432  |
| Volume2 <sup>*</sup> ( $\alpha$ ,h,I) (bare) | mm <sup>2</sup> | 28.688 | 22.347          | 7.392           | 7.013  | 10.581 |
| Free Volume <sup>*</sup> (bare)              | mm <sup>2</sup> | 3.199  | 2.373           | 0.746           | 0.723  | 1.149  |
| Free Volume (bare)                           | %               | 11.152 | 10.621          | 10.090          | 10.313 | 10.860 |

|                                     | Units           | Cable1    | Cable2     | Cable3     | Cable4 & 7 | Cable5     | Cable6     |
|-------------------------------------|-----------------|-----------|------------|------------|------------|------------|------------|
| Volume1 $(m,\rho)$ (insulation)     | mm <sup>2</sup> | 30.949    | 25.301     | 25.301     | 8.531      | 8.080      | 11.304     |
| Volume2 $(\alpha,h,I)$ (insulation) | mm <sup>2</sup> | 32.954    | 26.795     | 26.795     | 8.960      | 8.502      | 12.139     |
| Free Volume (insulation)            | mm <sup>2</sup> | 2.005     | 1.494      | 1.494      | 0.429      | 0.422      | 0.834      |
| Free Volume (insulation)            | %               | 6.085±0.2 | 5.576±0.15 | 6.231±0.16 | 4.789±0.18 | 4.966±0.29 | 6.873±0.18 |

\* - Normalized Free Volume = Volume is divided by length of the sample

CERN, July 17, 2006





### Network Model

### Electrical equivalent

### Model of the superconducting cable and coils Results of the simulations with PSpice

CERN, July 17, 2006



### Electrical equivalent



#### The analogy of the equivalent thermal circuit

|                | The        | mal circuit          |               | Electrical Circuit |                         |  |  |  |
|----------------|------------|----------------------|---------------|--------------------|-------------------------|--|--|--|
| Т              | [K]        | Temperature          | V [V] Voltage |                    | Voltage                 |  |  |  |
| Q              | Q [J] Heat |                      | Q             | [C]                | Charge                  |  |  |  |
| q              | [W]        | Heat transfer rate   | i             | [A]                | Current                 |  |  |  |
| к              | [W/Km]     | Thermal Conductivity | σ             | [1/Ωm]             | Electrical Conductivity |  |  |  |
| R              | [K/W]      | Thermal Resistance   | R             | [V/A]              | Resistance              |  |  |  |
| C <sup>o</sup> | [J/K]      | Thermal Capacitance  | С             | [C/V]              | Capacitance             |  |  |  |

The analogy between electrical and thermal circuit can be expressed as:-steady-state condition $Temperature rise \iff Voltage difference$ 

$$\Delta T = qR^{\Theta} \qquad \Leftrightarrow \qquad \Delta V = iR$$

-transient condition

Heat diffusion

 $\Leftrightarrow$  *RC transmission line* 

$$\nabla^2 T = R^{\Theta} C^{\Theta} \frac{\partial T}{\partial t} \qquad \Leftrightarrow \qquad \nabla^2 V = R C \frac{\partial V}{\partial t}$$

CERN, July 17, 2006





### Network Model

### Electrical equivalent Model of the superconducting cable and coils Results of the simulations with PSpice

CERN, July 17, 2006





CERN, July 17, 2006



### Cable modeling





CERN, July 17, 2006



### Cable model – 36 strands



#### Network model of the cable - 36 strands model



CERN, July 17, 2006



### **Coil modeling**





CERN, July 17, 2006





### Network Model

### Electrical equivalent Model of the superconducting cable and coils Results of the simulations with PSpice

CERN, July 17, 2006



CERN, July 17, 2006

LCWG meeting

D. Bocian / 30



#### Network model - simulation





CERN, July 17, 2006



#### Results of the simulations





CERN, July 17, 2006















# Validation of the model Measurements in SM18

Evaluation of the network model quality

CERN, July 17, 2006

LCWG meeting

D. Bocian / 35



### Measurements in SM 18



### Two methods of measurement

- I<sub>coil</sub> =const, increase of I<sub>QH</sub> with a step of 0.1 A
- I<sub>QH</sub> =const, wait 300 second for staeady state, then ramp of I<sub>coil</sub>
- Second method is better for steady state heat transport
- 3 MQM's and 2 MQY's at 4.535K have been tested



### Measurements in SM18





CERN, July 17, 2006



#### Resluts of the measurements





CERN, July 17, 2006





# Validation of the model

**Measurements in SM18** 

### Evaluation of the network model quality

CERN, July 17, 2006

LCWG meeting

D. Bocian / 39











|             | Temperature<br>margin | I quench heater<br>[A] | heater<br>I magnet [A] |          | AI magnet | ΔI <sub>magnet</sub> |
|-------------|-----------------------|------------------------|------------------------|----------|-----------|----------------------|
| Magnet type | ΔT [K]                |                        | calculated             | measured | [A]       | [%0]                 |
|             | 1,019                 | 1,65                   | 4609                   | 4650     | -41       | -0,89                |
| MQM 627     | 1,213                 | 1,8                    | 4398                   | 4450     | -52       | -1,18                |
|             | 1,498                 | 2                      | 4080                   | 4310     | -230      | -5,64                |
|             | 1,082                 | 1,7                    | 4541                   | 4472     | 69        | 1,52                 |
|             | 0,9704                | 1,5                    | 4661                   | 4574     | 87        | 1,87                 |
|             | 1,104                 | 1,6                    | 4517                   | 4421     | 96        | 2,13                 |
| MOM 677     | 1,246                 | 1,7                    | 4361                   | 4298     | 63        | 1,44                 |
|             | 1,397                 | 1,8                    | 4194                   | 4166     | 28        | 0,67                 |
|             | 1,557                 | 1,9                    | 4013                   | 4037     | -24       | -0,60                |
|             | 1,725                 | 2                      | 3820                   | 3842     | -22       | -0,58                |
|             | 0,976                 | 1,7                    | 4655                   | 4508     | 147       | 3,16                 |
| MOMC 677    | 1,094                 | 1,9                    | 4528                   | 4406     | 122       | 2,69                 |
|             | 1,219                 | 1,9                    | 4391                   | 4223     | 168       | 3,83                 |
|             | 1,35                  | 2                      | 4246                   | 3952     | 294       | 6,92                 |

CERN, July 17, 2006







CERN, July 17, 2006





|                  | Temperature<br>margin | I <sub>quench heater</sub><br>[A] | I <sub>magn</sub> | I <sub>magnet</sub> [A] |      | ΔI magnet |
|------------------|-----------------------|-----------------------------------|-------------------|-------------------------|------|-----------|
| Magnet type      | ΔT [K]                |                                   | calculated        | measured                | [A]  | [%0]      |
|                  | 1,571                 | 1,65                              | 4073              | 3750                    | 323  | 7,93      |
| MQY 609<br>outer | 1,8803                | 1,8                               | 3799              | 3457                    | 342  | 9,00      |
|                  | 2,279                 | 2                                 | 3378              | 3040                    | 338  | 10,01     |
|                  | 0,983                 | 1,5                               | 3661              | 3686                    | -25  | -0,68     |
| MQY 609<br>inner | 1,1994                | 1,7                               | 3413              | 3502                    | -89  | -2,61     |
|                  | 1,5612                | 2                                 | 2966              | 3184                    | -218 | -7,35     |
|                  | 1,5645                | 1,5                               | 4417              | 3757                    | 660  | 14,94     |
| MQY 659<br>outer | 1,9913                | 1,7                               | 3766              | 3332                    | 434  | 11,52     |
|                  | 2,4468                | 1,9                               | 3307              | 2842                    | 465  | 14,06     |
|                  | 0,7926                | 1,4                               | 3780              | 3844                    | -64  | -1,69     |
|                  | 0,8848                | 1,5                               | 3672              | 3768                    | -96  | -2,61     |
| MQY 659          | 0,989                 | 1,6                               | 3556              | 3681                    | -125 | -3,52     |
| inner            | 1,0966                | 1,7                               | 3429              | 3590                    | -161 | -4,70     |
|                  | 1,2098                | 1,8                               | 3293              | 3493                    | -200 | -6,07     |
|                  | 1,3273                | 1,9                               | 3146              | 3391                    | -245 | -7,79     |

CERN, July 17, 2006

LCWG meeting

D. Bocian / 43





# "Beam loss" simulations

CERN, July 17, 2006





- Quench limit for the "real" beam loss depends on the beam loss profiles
- heat flow distribution in the coil will be different compare to the "quench heater" simulations
- A simple simulation of beam loss are presented in the next slides
- The first result for typical "beam loss profile" in MQM magnet



### "Beam loss" simulation MQM magnet







### "Beam loss" simulation MQM magnet



Network model of the cable - 36 strands model



#### **Simulation settings:**

- heat source in the middle of the cable
- heating 5 cables with a one source of 0.6 W
- temperature margin  $\Delta T = 0.8 \text{ K}$

#### MQM quench limit for nominal current (4310 A) ~ 8 [mW/cm<sup>3</sup>]



### "Beam loss" simulation MQM magnet



Network model of the cable - 36 strands model



#### **Simulation settings:**

- heat source in the middle of the cable
- heating 5 cables with a 10 sources of 0.6 W each
- temperature margin  $\Delta T = 0.8 \text{ K}$

#### MQM quench limit for nominal current (4310 A) ~ 15 [mW/cm<sup>3</sup>]

CERN, July 17, 2006



• Beam loss profile with 5 region of heat deposition scalled (weighted) as follow:

- 1. **1.0**
- 2. 1.0/3.0
- **3. 0.4/3.0**
- **4. 0.1/3.0**
- **5. 0.03/3.0**



MQM quench limit for nominal current (4310 A)  $\Rightarrow$  6 [mW/cm<sup>3</sup>] MQM quench limit for ultimate current (4650 A)  $\Rightarrow$  4 [mW/cm<sup>3</sup>] MQM quench limit for nominal current (4310 A) and naive homogeneous heat deposit in profile 3, 4 and 5  $\Rightarrow$  3 [mW/cm<sup>3</sup>]

> MQY quench limit for nominal current (3610 A) and only "first layer heat deposit"  $\Rightarrow$  10 [mW/cm<sup>3</sup>]

CERN, July 17, 2006

LCWG meeting

D. Bocian / 50



Conclusions



- The network model has been presented
- All vital parameters have been collected or calculated
- Model is validated with measurements at 4.5 K
- First results from model are promising
- Beam loss simulations with GEANT 4 are on going
- It is necessary validate model at 1.9 K
- Model development transient losses simulations
- Non-linear object in the model outer layer of MQY magnet
- Now starting work on model of MQTL magnet
- We are open to discussion