

Beam loss induced quenches (Update on quench limit calculations)

D. Bocian¹, B. Dehning / AB-BI and A. Siemko / AT-MTM

¹ H. Niewodniczański Institute of Nuclear Physics PAN, Krakow, Poland

CERN, June 15, 2007

LCWG and MPWG joint meeting

Outline

Motivation

Thermodynamics of magnet structure

- Magnet characteristic
- > Heat transport in the magnets
- Characteristic of superconducting coils

Network Model

- Electrical equivalent
- > Superconducting cable and coil models

Validation of the model

- Measurements in SM 18
- > Evaluation of the network model quality
- "Beam loss" simulation
- Non "beam loss" heat sources
- Transient beam loss simulation
 - Network Model
 - OD model
- Summary and outlook

Motivation

- Quench is transition of the superconductor from the superconducting to the normal state. Such a transition invariably occurs in accelerator magnets if one of the three parameters: temperature, magnetic field or current density, exceeds a critical value.
- Quench limit calculation in terms of external energy deposition is vital for accelerators making use of superconducting magnets
- These studies are important for the LHC operation and efficiency of protection system, BLM calibration and design and operation of collimators

Thermodynamics of magnet structure

Magnet characteristic

Heat transport in the magnets Characteristic of superconducting coils

CERN, June 15, 2007

LCWG and MPWG joint meeting

Magnets chracteristic LHC dipole magnets cross section

CERN, June 15, 2007

Thermodynamics of magnet structure

Magnet characteristic Heat transport in the magnets Characteristic of superconducting coils

CERN, June 15, 2007

LCWG and MPWG joint meeting

Steady state heat transport in the magnet

A heat transfer in the main dipole. Arrows indicate the radial path of the heat transfer in the magnet.

Heat transfer in the magnets

 Heat transfer from the conductor to the cold source define the temperature margin
 Electrical insulation is the largest

thermal barrier at 1.9 K against cooling

Thermodynamics of magnet structure

Magnet characteristic Heat transport in the magnets Characteristic of superconducting coils

CERN, June 15, 2007

LCWG and MPWG joint meeting

Arc

magnet

Magnets coil

collar cold He ch

٢

_ ⊗ ⊕ ⊗ ⊗

٢

Æ

colla

CERN, June 15, 2007

LCWG and MPWG joint meeting

AT - MTM

Magnetic field distribution in the coils

CERN, June 15, 2007

LCWG and MPWG joint meeting

Network Model

Electrical equivalent

Model of the superconducting cable and coils

CERN, June 15, 2007

LCWG and MPWG joint meeting

Electrical equivalent

The analogy of the equivalent thermal circuit

Thermal circuit			Electrical Circuit			
Т	[K]	Temperature	V	[V]	Voltage	
Q	[J]	Heat	Q	[C]	Charge	
q	[W]	Heat transfer rate	i	[A]	Current	
к	[W/Km]	Thermal Conductivity	σ	[1/Ωm]	Electrical Conductivity	
R	[K/W]	Thermal Resistance	R	[V/A]	Resistance	
C ^o	[J/K]	Thermal Capacitance	С	[C/V]	Capacitance	

The analogy between electrical and thermal circuit can be expressed as:-steady-state condition $Temperature rise \iff Voltage difference$

$$\Delta T = qR^{\Theta} \qquad \Leftrightarrow \qquad \Delta V = iR$$

-transient condition

Heat diffusion

 \Leftrightarrow *RC transmission line*

$$\nabla^2 T = R^{\Theta} C^{\Theta} \frac{\partial T}{\partial t} \qquad \Leftrightarrow \qquad \nabla^2 V = R C \frac{\partial V}{\partial t}$$

CERN, June 15, 2007

Network Model

Electrical equivalent Model of the superconducting cable and coils

CERN, June 15, 2007

LCWG and MPWG joint meeting

CERN, June 15, 2007

Cable modeling

CERN, June 15, 2007

LCWG and MPWG joint meeting

Cable model – 36 strands

Network model of the cable - 36 strands model

CERN, June 15, 2007

Coil modeling

CERN, June 15, 2007

D. Bocian / 21

Validation of the model Measurements in SM18

Evaluation of the network model quality

CERN, June 15, 2007

LCWG and MPWG joint meeting

Two methods of measurement

- I_{coil} = const, increase of I_{QH} with a step of 0.1 A
- I_{QH} = const, wait 300 second for staeady state, then ramp of I_{coil}
- Second method is better for steady state heat transport
- 3 MQM's and 2 MQY's at 4.535K have been tested

CERN, June 15, 2007

LCWG and MPWG joint meeting

D. Bocian / 24

55.00

The results show very good agreement of the measurements with simulations. The relative difference between measured and calculated quench values are ranging from 0.6 to 15 % for all measured types of superconducting magnets at 4.5 K.

Internal Heating Aparatus

CERN, June 15, 2007

LCWG and MPWG joint meeting

CERN, June 15, 2007

D. Bocian / 27

Results of the measurements with IHA PRELIMINARY RESULTS

Main Dipole - MB

ADDITIONAL MEASUREMENTS ARE NECESSARY

CERN, June 15, 2007

Validation of the model

Measurements in SM18

Evaluation of the network model quality

CERN, June 15, 2007

LCWG and MPWG joint meeting

Evaluation of the Network Model AT - MTM Matching Algorithm

$$\begin{split} \Delta T=0.1K - accuracy level \\ \Delta T_i=T_i - T_{i-1} \\ IF(\Delta T_i=\Delta T) \text{ THEN ,,finish iteration"} \\ IF(\Delta T_i < 0) \text{ THEN } T_i=T_{i-1} - \Delta T_i/2 \\ & \text{ELSE } T_i=T_{i-1} - \Delta T_i/2 \\ \text{ENDIF} \end{split}$$

CERN, June 15, 2007

"Beam loss" simulations

CERN, June 15, 2007

LCWG and MPWG joint meeting

- Quench limit for the "real" beam loss depends on the beam loss profiles
- heat flow distribution in the coil will be different compare to the "quench heater" and IHA simulations
- A simple simulation of beam loss are presented on the next slides
- The updated result for typical "beam loss profile" in MQM, MQY and MB magnet are presented

MQM quench limit for nominal current (4310 A) \Rightarrow 6 [mW/cm³] MQM quench limit for ultimate current (4650 A) \Rightarrow 4 [mW/cm³] MQM quench limit for nominal current (4310 A) and naive homogeneous heat deposit in profile 3, 4 and 5 \Rightarrow 3 [mW/cm³]

MQY quench limit for nominal current (3650 A) \Rightarrow 8 [mW/cm³] MQY quench limit for ultimate current (3900 A) \Rightarrow 5 [mW/cm³] MQY quench limit for nominal current (3650 A) and naive homogeneous heat deposit in profile 3, 4 and 5 \Rightarrow 2 [mW/cm³] $T_{b} = 4.5K$

CERN, June 15, 2007

Homogenous beam loss-temperature distribution

I_{magnet} = 12057 A, T_b=1.9 K

CERN, June 15, 2007

LCWG and MPWG joint meeting

Homogenous beam loss-temperature distribution

I_{magnet} = 12057 A, T_b=1.9 K

"Beam loss" profile in MB magnet PRELIMINARY RESULTS

This numbers should not be taken as a reference numbers for MB magnets

- Beam loss profile with homogenous heat deposition
- MB dipole simulations preliminary results no cold bore
 - 10500 A \rightarrow Quench Limit ~ 150 mW/cm³
 - 11300 A \rightarrow Quench Limit ~ 105 mW/cm³
 - 12100 A \rightarrow Quench Limit ~ 77 mW/cm³
- MB dipole simulations preliminary results with cold bore
 - 10500 A \rightarrow Quench Limit ~ 20 mW/cm³
 - 11300 A \rightarrow Quench Limit ~ 15 mW/cm³
 - 12100 A \rightarrow Quench Limit ~ 10 mW/cm³

CERN, June 15, 2007

"Beam loss" profile in MB magnet PRELIMINARY RESULTS

Ongoing work

"Non beam loss" heat loads Transient beam loss

CERN, June 15, 2007

LCWG and MPWG joint meeting

Non beam loss heat loads

A. Siemko, 14th "Chamonix Workshop", January 2005

Heat generated by electrical sources

For main dipole during ramp (R. Wolf)	[J/m]
 Hysteresis loss 	240
• Inter-strand coupling (Rc = 7.5 $\mu\Omega$)	45
• Inter-filament coupling ($\tau = 25$ ms)	6.6
 Other eddy currents (spacers, collars) 	4
 Resistive joints (splices) 	30
Total (per meter)	~325

The first estimations shows contribution at the level of 0.5 mW/cm^3

A detailed studies are ongoing (A. Verweij, R. Wolf)

CERN, June 15, 2007

Transient beam loss - Network Model

D. Bocian & P. Xydi

P. Pugnat

CERN, June 15, 2007

strand index

Transient beam loss – 0D Model

P.P. Granieri et al.

0D Model is delevoped and work is on going

CERN, June 15, 2007

- The agreement between measurements and simulations is in worse case at the level of 15% at 4.5K.
- The better understanding of magnet thermodynamics is achived
- The validation of the model at 1.9 K is ongoing
- On going transient losses simulations
- The simualtions of "realistic" beam loss including cold bore (1.5 and 1.75 mm) are required.
- Continuation of measurement in SM18 on MB, MQ and MQM magnets is required.