ENERGY DEPOSITION IN THE POINT 7 WARM SECTION AT 3.5 TeV

M. Brugger, F. Cerutti, A. Ferrari, L. Lari, E. Lebbos, A. Mereghetti, K. Roeed, V. Vlachoudis

POWER DEPOSITED IN THE STRAIGHT SECTION

241 KW hitting the beam 1 collimators for 0.2h beam lifetime @ nominal intensity (i.e. 2808 bunches with 1.15 10¹¹p each)

BEAM PIPE HEATING

for 0.2h beam lifetime @ nominal intensity

peak power longitudinal profile

POWER DENSITY IN THE COLLIMATORS [II]

LCWG, November 6th 2009

PEAK DOSE IN THE WARM MAGNET COILS

	7 TeV	3.5 TeV
magnet	[MGy]	
MBW.B6L7	3.3	1.7
MQWA.E5L7	0.9	0.3

for 1.15 10¹⁶ lost protons

B

no direct losses considered

only shower from collimators

CONCLUSIONS

 3.5 TeV operation at nominal intensity represents a more favorable scenario than top energy as for energy deposition in the betatron cleaning warm section (half energy!)

• the (larger) TCLA aperture makes worth evaluating peak power density in the cold section SC magnets (single diffractive!)