

ON PASSIVE ABSORBERS

IN IR7

motivation -

examination of different designs -

energy deposition maps -

conclusions

ng Mar 19, 2007 《 □ 〉 《 큔 〉 《 쿄 〉 《 쿄 〉 트

RATIONALE

protection of the most exposed warm magnets against excessive radiation damage and heating

LIMITS

→ in the long run, the accumulated **dose on the insulators in the coils** is expected to be the major factor for magnet failure

< 3 MGy/y to guarantee a theoretical life-time of at least 10 y

[S. Ramberger, minutes of the 46th LCWG meeting, Nov 2004]

→ in a steady state scenario (≥ 1 h), MBW and MQW can stand a maximum power of about 15 kW and 10 kW, respectively, if well distributed over the magnet

[ibidem]

Mar 19_2007

EFFECTS

- a 1 m long tungsten TCAP shielding the first MBW of the second dogleg pair reduces the annual dose peak in the front crossing of its coils by a factor > 40
- a second 20 cm W TCAP between the two elements of the pair provides an additional factor 2 for the second MBW
- a third 60 cm W TCAP in front of the MQW reduces the peak by a factor 5 and the total power by a factor 2.5 in the first quadrupole

84th LCWG meeting

IR7 Left Maching Section layout

Impact of different designs of the three passive absorbers

min and max values for total power (first line) and peak (second line)

element	all W 450 x 400	1mm steel pipes 300 x 300	+ 0.25mm air gap 300 x 300	1.5mm Cu pipes 300 x 300	max section 1020 x 720 800 x 700 (3rd)	
TCAP.A6L7.B1	30.1	27.1	<mark>26.9</mark>	27.1	35.6	kV
	112.6	106.5	105.1	104.2	103.0	W/ci
MBW.B6L7.B1	14.4	16.6	<mark>16.7</mark>	16.6	11.6	kV
	1.856	<i>2.320</i>	2.354	<i>2.359</i>	2.477	MG
TCAP.B6L7.B1	4.0	3.3	<mark>3.3</mark>	3.3	3.9	kV
	31.4	24.2	23.5	23.2	22.8	W/ci
MBW.A6L7.B1	13.4	13.8	13.9	13.8	13.5	kV
	2.049	2.111	2.394	2.359	2.351	MG
TCAP.C5L7.B1	37.6	34.4	<mark>34.2</mark>	34.4	41.5	kV
	192.4	185.1	183.5	180.7	180.2	W/ci
MQW.E5L7.B1	10.0	12.2	12.4	12.3	8.2	kV
	0.501	0.552	0.640	0.592	0.561	MG
MQW.D5L7.B1	5.5	5.6	<mark>5.6</mark>	5.6	5.6	kV
	0.396	0.452	0.411	0.404	0.428	MG

kW and W/cm³ assuming 4 10¹¹ p/s

MGy/y assuming 1.15 10¹⁶ p/y

Francesco Cerutti, AB-ATB-EET

84th LCWG meeting

Mar 19, 2007

< □ > < □ > < □ > < □ > < □ > < □ >

500

Location of the peak in the TCAP

TCAP.C5L7.B1

(Cu pipes, max section: 180.2 W/cm³)

1 x 1 x 2 cm³ scoring grid beam 1 vacuum chamber at x = 11.2 cm y = 0 with $\Delta x = 5.1$ cm $\Delta y = 2.9$ cm (TCAP.A5L7.B1 and TCAP.B5L7.B1 with $\Delta x = 5.9$ cm $\Delta y = 4.4$ cm)

84th LCWG meeting

- 2

イロト イヨト イヨト イヨト

◆□▶ ◆□▶ ◆□▶ ◆□▶ ◆□ ● ○○○

Location of the peak in the MBW

MBW.B6L7.B1

(Cu pipes: 2.359 MGy/y statistical error ~10%)

84th LCWG meeting

イロト イヨト イヨト イヨト

-2

MQW

ing Mar 19, 2007 ∢□▷ ∢舂▷ ∢≧▷ ∢≧▷

三 のへの

Location of the peak in the MQW

MQW.E5L7.B1

(Cu pipes: 0.592 MGy/y statistical error ~10%)

 $1 \times 1 \times 3.15 \text{ cm}^3$ scoring grid beam 1 vacuum chamber at x = 11.2cm y = 0 with $\Delta x = 5.1$ cm $\Delta y = 2.9$ cm

Francesco Cerutti, AB-ATB-EET

84th LCWG meeting

-2

イロト イヨト イヨト イヨト

Conclusions

annual dose peak in the warm magnets (for nominal luminosity !!! 1.15 vs 2.00 - ultimate - 10¹⁶ p/y):

2.5 MGy/y in the MBW with pipes in TCAP (<u>~25% increase</u> in comparison with

the all W - i.e. no pipe - configuration)

Mar 19_2007

< 0.7 MGy/y in the MQW</p>

total power in the warm magnets (for peak loss rate 4 10¹¹ p/s):

- constant in the second element: 14 kW in MBW.A6L7.B1 and 5.5 kW in MQW.D5L7.B1
- in MBW.B6L7.B1 from 17 kW (pipe in TCAP.A6L7.B1) to 11.5 kW (1020 x 720 mm² TCAP.A6L7.B1)
- in MQW.E5L7.B1 from 12.5 kW (pipes in TCAP)

to 8 kW (max section TCAP [800 x 700 mm² TCAP.C6L7.B1])

total power in the passive absorbers:

40 kW in TCAP.C6L7.B1

power peak in the passive absorbers:

≤ 200 W/cm³ in TCAP.C6L7.B1

a "sandwich" structure for TCAP (pipe + tungsten core + small gap + iron body)

appears a viable solution as well, to be further simulated as soon as a more detailed design becomes available