Preparation for ions in the LHC

From discussions with and with contributions from : J Jowett, S Redaelli, M Solfaroli, W Venturini

Beam parameters

		Early++ (2010/11)	Nominal
$\sqrt{s_{_{\rm NN}}}$ (per colliding nucleon pair)	TeV	2.76	5.5
Number of bunches		60→128 (124,112 coll.)	592
Bunch spacing	ns	1350	99.8
<i>β</i> *	m	3.5	0.5
Pb ions/bunch		7 x 10 ⁷	7x10 ⁷
Transverse norm. emittance	μm	1.5	1.5
Initial Luminosity (L_0)	cm ⁻² s ⁻¹	(0.7→ 1.26) 10 ²⁵	10 ²⁷
Stored energy (W)	MJ	0.2→ 0.4	3.8
Luminosity half life (1,2,3 expts.)	h	τ _{IBS} =7-30	8, 4.5, 3

J Jowett

Initial settings

First setup with 2 bunches/beam : still safe beam @3.5TeV Nominal filling scheme still being finalised. Factor of **2.5 SBF reduction** agreed upon.

- Ramp and Squeeze functions are ready in a dedicated Hypercycle (EARLY-IONS_3.5TeV)
- Most settings to be kept identical to protons except for: RF, X-ings and collimation.
- Xing angle settings to be maintained as for protons through injection, ramp and squeeze. Change to ion settings at the end of the squeeze.
- IP setttings for IONS:
- LHCb, ALICE spectrometers ON (on_lhcb=on_alice=2)
- 0 μrad for IP1/IP5. 140 μrad for IP2, 100 μrad for IP8

Orbit checks

- Cross calibration of orbit reading with protons:
 - 1. Inject high intensity p bunch (LOW BPM sensitivity)
 - 2. Correct against reference orbit
 - 3. Inject low intensity p bunch and record orbit (HIGH BPM sensitivity)
 - 4. Inject an lon bunch and check that orbit is the same
 - 5. Define it as lons reference orbit
- Test ramp with safe ion beam (2bunches), collimators at injection settings and OFB on to establish reference orbit up to high energy
- During squeeze use same orbit reference as for protons and measure the optics

Venturini/Solfaroli, - LHC BBCWG 12/10/2010

Collimation settings

- 1. Ramp with the same collimator settings as for p until the end of the squeeze, then
- 2. change X-ing angles at IPs and set up TCTs around new collision orbit
 - Only one collimator setup at top energy
 - Shadowing of ALICE ZDCs : TCTVBs at 23 mm (up from 11/15mm)
- 3. Loss maps to be taken at 3 critical points (both IR3 and IR7), 3-4 fills:
 - injection,
 - end of squeeze
 - collision

Loss maps: injection, beam1, IR7

62 bunches, 12min lifetime

Loss maps collision: $\beta^*=3.5m$

62 bunches, 12min lifetime

Loss maps collision: $\beta^*=3.5m$

62 bunches, 12min lifetime

Loss maps: collision, $\beta^*=3.5m$

62 bunches, 12min lifetime

Commissioning planning

			Bunches	Total Time [days] both rings	Comments
	10	Re-commission protons	1	1	Following technical stop, establish orbit with low-intensity BPM settings.
	11	Injection and first turn	1	(0.25)	Magnetically identical to protons; 1 bunch/beam.
ſ	12	Circulating beam	1	0.25	Magnetically identical to protons. Synchronisation of transfer lines and RF capture at -5 kHz frequency shift. Check lifetime in particular.
	13	450 Z GeV initial commissioning	1	0.25	Cross-calibration of BPMs from protons. Beam instrumentation setup. Wire-scanner, BGI.
	14	450 Z GeV optics checks with two beams	2	(0.5)	Magnetically identical to protons but do minimal check of energy matching, beta-beating. >0.4 nominal bunch intensity
	15	450 Z GeV - two beams	2	0.5	Otherwise magnetically identical to protons
	16	Collimation	2	0.5	Set-up single stage collimation, loss map to compare with protons.
	17	Ramp	1	0.5	Start with two beams, Magnetically identical to protons. Check beam dump at various energies.
ſ	18	3.5 Z TeV flat top checks	1	0.5	Performed following successful ramp. Collimation setup and loss map.
ſ	19	Setup for collisions - 3.5 Z TeV	1	0.5	Squeeze and transition to zero real crossing angle in ALICE, CMS & ATLAS. LHCb separated, squeezed. Collimation setup.
ſ	110	Loss maps	1	0.5	Measure to verify hierarchy appropriate for ion beams. test predictions. Verify protection.
		Stable beam	1	(0.1)	See machine backgrounds ?

Commissioning planning (II)

J Jowett

		Bunches	Total Time [days] both rings	Comments
	TOTAL to prepare		5+(1)	
11	First collisions+physics	2	1.5	Ramp with two beams, squeeze, checks
112	Increase intensity	128	1	Increase bunch number to 128 (Early++ Scheme).
	Physics	128		Parasitic measurements during physics (luminosity evolution, BFPP, etc,) to test our models and prepare future runs.