Ion collimation performance during energy ramping

G Bellodi

CWG meeting 02/03/09

Two scenarios analysed so far: Pb injection (E=177 A GeV)

	TCPs	TCSs	TCLAs
IR3	8	9.3	10
IR7	5.7	6.7	10

Top energy: Pb⁸²⁺ at 2.76 A TeV

	TCPs	TCSs	TCLAs
IR3	15	18	20
IR7	6	7	10

3

U

t

Energy dependence

Cross sections:

EMD:
$$\sigma_{EMD} \propto \ln \left[0.025 \cdot \left(\gamma^2 - 1 \right) \right]$$

HAD: more moderate (~10% over whole E range)

Energy deposition and scattering:

Bethe-Bloch

$$\frac{dE}{dx} = \rho K \frac{Z_P^2 Z_T}{A_T \beta^2} \left[\frac{1}{2} \ln \left(2m_e c^2 \beta^2 \gamma^2 \frac{T_{\text{max}}}{I^2} \right) - \beta^2 - \frac{\delta}{2} \right]$$

Moliere

$$Wrms = \frac{19.3 \cdot 10^6}{\beta^2 \gamma} Zp \sqrt{\frac{s}{X_0}} \left[1 + 0.038 \ln\left(\frac{s}{X_0}\right) \right]$$

Settings

□ 5 energy points at E=177.4, 800, 1450, 2100, 2760 A GeV

□ All cross sections regenerated with FLUKA for different energies

□ V6.500 injection optics used for all cases

□ Gap settings assigned following "rigid scaling scenario" (*C.Bracco, CWGM* 23/04/2007) : TCPs at 6σ , fixed offset between TCPs and downstream collimators, TCTs <u>open</u> except at top energy

E [A GeV]	ТСР7	TCS7	TCLA7	ТСР3	TCS3	TCLA3
177.4	5.7	6.7	10	8	9.3	10
800	6	8.1	15.1	10.9	13.6	15.1
1450	6	8.9	18.3	12.6	16.3	18.3
2100	6	9.4	20.8	13.9	18.4	20.8
2760	6	7	10	15	18	20

Initial beam distribution and diffusion rates have been adjusted with energy to keep target of $1\mu m$ average impact parameter on TCPs at first turn (equilibrium beam distribution \rightarrow LHC Project Report 592)

More pessimistic point for simulations:

LHC cycle

800 GeV

U

2100 GeV

10

U

Quench limit along the ramp

Protons energy dependence:

$$QL = 2 \times 10^8 \left[\frac{E}{TeV} \right]^{-1.64} \text{ p}.$$

p/m/s [B Dehning]

Energy [GeV/u]	Quench limit [W/m]	Max loss peak [W/m]
177	53.4	1.12
800	20.35	3.6
1450	13.90	8.6
2100	10.97	18.98
2760	9.21	30

Conclusions

One operational scenario for collimation during energy ramping was studied, based on a rigid scaling of collimator gap settings.

□ At all energy points losses are restricted to the IR7 dispersion suppressor.

□ Loss pattern changes qualitatively, with loss peaks becoming ever more localised and discrete with growing energy (beam is more rigid, smaller scattering angle..)

 \square Heat load grows with energy and exceeds quench limit around E~1.7 A GeV (for nominal machine).

□ An optimisation of collimation performance with alternative settings still to be investigated...