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Heavy lon Physics Parameters

SPS RHIC LHC
CM energy/nucleon +'s /u/[GeV] 17 200 5500 x 28

Charged multiplicity S 400 800 > 3000 challenge
Energy density e /[GeV /fm?] 3 5 15-60 denser
Freeze — out volume Vi /fm3 ~10° ~10* =~10° larger
QGP lifetime Tocp/ [fm/c] <l 15-4 >10 longer
Thermalizationtime 7o/ [fm/C] >1 x02 <01 faster
Toep / To 1 6 > 30

With increasing energy, more partons are available, interact more effectively.
Thermalized high-T phase established more quickly and lasts longer.

J.M. Jowett, Collimation Working Group, 3/4/2006 2



e I-LHC Long-Term Planning
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m Baseline: Lead-Lead collisions

— “Early Pb Scheme” — much easier to achieve — for
2008 (and 2009?)

m Allows study of performance limitations.

— “Nominal Pb Scheme” by 2009

m Pb-Pb is perceived as posing the most difficult
accelerator physics problems

m Future “upgrades” not in Baseline:

— p-Pb collisions under study

m Effects of revolution frequency difference at injection
expected to be much weaker than at RHIC

— lighter ion-ion collisions (e.g. Ca, Ar, O, ...) appear
possible without major upgrades, to be studied.

{
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Nominal vs Early lon Beam in LHC

m Why Early Beam?

— Easier for injectors, shorter LHC filling time (4
min/ring)

— Keep nominal bunch population (7 107 ions/bunch) to
study limitations without risks

— A Luminosity of L=5. 102> cm s! (lower by a factor
20) by fewer bunches (1/10) and p* =1 m (factor
1/2) useful for physics (early results)

— Improved Luminosity lifetime because of larger *

J.M. Jowett, Collimation Working Group, 3/4/2006



Nominal vs. Early lon Beam: Key Parameters

Parameter Units Nominal Early Beam
Energy per nucleon TeV/n 2.76 2.76
Initial Luminosity L, cm2 st 1 1027 5102°
No. bunches/bunch harmonic 592/891 62/66
Bunch spacing ns 99.8 1350

B* m 0.5 (same as p) 1.0
Number of Pb ions/bunch 7 107 7 107
Transv. norm. RMS emittance pnm 1.5 1.5
Longitudinal emittance eV s/charge 2.5 2.5
Luminosity half-life (1,2,3 expts.) H 8,4.5, 3 14, 7.5, 5.5

J.M. Jowett, Collimation Working Group, 3/4/2006



Lead lon Schedule (post-Chamonix 2006)
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Electromagnetic Interactions of Heavy ions

QED effects in the peripheral collisions of heavy ions

Rutherford 208 D}, 82+ | 208 py82+ vy (208 5 821 | 208 .82+ Copious but harmless
scattering: Pb*" +7° Pb™" —— " Pb™" +°* Pb

Free pair 208 p 82+ , 208 P82+ vy (208 ooy 208 pp82+ | At A Copious but harmless
production: Pb*" +7° Pb™" —— " Pb™" +°° Pb*" +e" +e

Electron 208 py82+ | 208 pp82+ __y 208 pyy82+ | 208 ppsls | o+ Secondary beam out of IP,

capture by pair effectively off-momentum”

Electron can be captured to a number of

production b d stat t onlv 1s. 1

(ECPP) ound states, not only 1s 5, = - — 0012 for Pb
Electromagnetic |aspps+ 28 ppsz+ __y 2% ppysz+ 4 (%8 pp2ry* Secondary beam out of IP,
Dissociation . effectively off-momentum:
(EMD) 1 3

207 pp®2+ 4 8p = —H =-4.8x10"" for Pb

Numerous other changes of ion . A A
( 9 1+ AA/A

charge and mass state happen at  §(AQ, AA) ~ - s
smaller rates.) | 14+ AQ/Q

J.M. Jowett, Collimation Working Group, 3/4/2006 7



1+ AA/A

0(AQ,AA) ~

1+AQ/Q

J.M. Jowett, Collimation Working Group, 3/4/2006

Nuclear cross sections

1

Hydrogen
Helium
Oxygen
Argon
Krypton
Indium
Lead

m Cross-section for Pb totally
dominated by electromagnetic
processes

m Values for non-Pb ions may

need uoward revision
BFPP(=ECPP) from Meier et
al, Phys. Rev. A, 63, 032713
(2001), calculation for Pb-Pb
at LHC energy

OH

0.105

0.35
1.5
3.1
4.5
9.5
8

Owt = Ol T Ogvp T Ogcpp

0 EMD
0

0.002
0.13
1.7
155
44.5
225.

Need to update

O ECPP
4.25%x 1011

1.x10-8
0.00016
0.04

3.

185
280.756

Total cross - section for ion removal from beam

O tot

0.105

0.352
1.63016
4.84

23.

68.5
513.756

8



Luminosity Limit from BFPP

208
208Pb82+ _|_208 Pb82+ Y f Pb82+ _|_208 Pb81+_|_e+

Energy deposition by ion
flux may exceeds quench
limit of superconducting
magnets at nominal
luminosity.

Longitudinal Pb8%* ion
distribution on screen

See LHC Project
Note 379,

New estimates
Beam screen in one magnet fOf d/,UO/E’
quench limit

Calculations being refined
with new ion-matter
interaction models in FLUKA

J.M. Jowett, Collimation Working Group, 3/4/2006 9

Secondary Pb81* beam
emerging grom IP and
impinging on beam

screen
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Thresholds for visibility on BPMs and BCTSs.
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: ‘ IPopticsTable[ "Collisionlons', "'LHCB1™]

/INumberForm=

Bx/M
By/M
Xc/ MM
Ye/ MM

Pxc/urad
Pyc/urad

1P1

0.55
0.55

1.1x107°
0.5
~2.95%x10°
143.

1P2
0.5
0.5

~3.59x1072
5.77x107°
2.63x10°
~10.

IPopticsTable["'Collisionlons', "LHCB2'

//NumberForm=

Bx/M
By/M
X/ Mm
Ye/ MM

Pxc/urad
Pyc/ 1 rad

1P1
0.55
0.55

4.11x10°
0.5
~2.79%x10°
~142.

J.M. Jowett, Collimation Working Group, 3/4/2006

1P2
0.5
0.5

3.94x107°
~6.01x10°
5.5x10°
10.

1P5
0.55

0.55

0.5
2.08x107°
142
~7.9x10°

1P5

0.55

0.55

0.5
~2.72x107°
_142.
~0.0000107

Optical Parameters at the IPs (Nominal)

1P8
10.
10.

~3.18x 1072
0.5
~210.
~1.81x10°7

IP3

10.

10.
-2.43x10°8
0.5

210.
~2.69x10°

IP1.L1
0.55
0.55

1.1x107°
0.5
~2.95%x10°
143.

IP1.L1
0.55
0.55

4.11x10°
0.5
~2.79%x10°
~142.
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‘ IPopticsTable[""EarlyCollisionlons', "'LHCB1'"]

Optical Parameters at the IPs (Early)

NumberForm=
IP1 1P2 IP5 IP8 IP1.L1
Bx/M 2. 1. 2. 10. 2.
By/M 2. 1. 2. 10. 2.
Xc/ mm ~1.11x107° 2.29%x 1079 0.322 1.78x107° 3.08x107°
Y/ mm -0.322 2.78x 1079 3.61x10710 2. -0.322
Pxc/urad 2.37x10°° -1.83x10° 92. ~170. 1.86x10°°
Pyc/urad 92. ~2.13x10°° -1.98x10° 8.67x1077 92._
IPopticsTable[""EarlyCollisionlons', "LHCB2'"]
NumberForm=
IP1 1P2 IP5 IP8 IP1.L1
Bx/M 2. 1. 2. 10. 2.
By/M 2. 1. 2. 10. 2.
Xc/ mm 3.94x 1079 3.09x10° 0.322 -8.36x 1079 3.94x107°
Ye/ mm -0.322 ~4.5x1079 -5.35x 1079 2. -0.322
Pxc/urad ~1.74%x10° 1.11x10°8 ~92. 170. ~1.74x10°°
Pyc/urad -92. -3.55x 1077 ~1.07x10° -1.13x10° -92.

J.M. Jowett, Collimation Working Group, 3/4/2006

12



X/m
Collisionslons, IR2 0.2

y/m
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Beams crossing, Nominal+EARLY, IR2 (2c beam)

IRcrossingPlot3D["Collisionlons™, "'IR2", 2, 0.02]

X/m

Collisionlons, IR2

0.020.01 ¢ -0.010.02

0.02

0.01

y/m 0

~0.01 | 3450

3400

—0.02 3350

Early Collisionlons, IR2 0.02.01 0_0,019,02

0.02

0.01 |

ym 0

—0.01 |

-0.02

s/m
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RF

40079 ——— 17—
w0788 P/
N 400.786 |
§ ﬁ 208p 82+
£ 400784 |
7 it ChRF
7 On central orbit:  f,_ = -
400.782 | c 1+[ m._c J
: ion pp
40078~ /T VT T T T
1 2 3 4 5 6 7
Proton momentum / (TeV/c)

Larger frequency swing than with protons, no problem

Different bunch filling schemes

RF noise to be clarified (SPS MD to test continuous use)

Needed to blow-up longitudinal emittance at collision energy (1BS)

J.M. Jowett, Collimation Working Group, 3/4/2006 15



Optics for the Early and Nominal lon Schemes

m Same geomelrical transverse beam size and emittance

— Optics, dynamic aperture, mechanical acceptance, etc. similar to
protons.

m Injection and ramp done with exactly the same optics, orbits,
corrections, etc. as for protons

— Should shorten ion commissioning time considerably!
m Colliding in ATLAS, CMS = same squeeze as protons
Leave IR8 in injection configuration
m Main difference is that IR2 is squeezed to B’ =2,1,05m

— May - or may not - be operationally convenient to commission
the ion optics first with low-intensity protons.

m Crossing angle at IP2 (1,5?) may be small (includes ALICE muon
spectrometer, details in Design Report)

— Aperture requirements somewhat relaxed w.r.t. protons
— Operational time for polarity reversals

J.M. Jowett, Collimation Working Group, 3/4/2006



Plan for Commissioning LHC Rings with Lead lons (1)

m Assume that protons can be collided
— Injection, ramp, squeeze (where applicable) are
set up
m Re-commission injection and first turns with single ion
“pilot” bunch (close to nominal intensity)
— Adjust BST
— Energy matching to different SPS cycle, each ring
— Should go quickly (magnetic reproducibility...)
— Deal with any difference of geometric beam size from
protons (collimator settings, etc.)
m Set up RF and capture (“few shifts™), instrumentation

J.M. Jowett, Collimation Working Group, 3/4/2006 17



Plan for Commissioning LHC Rings with Lead lons (2)

m Re-commission ramp
— Should also go quickly (magnetic reproducibility again)

— Deal with any difference of geometric beam size from protons
(collimator settings, etc.)

m Commission squeeze of IP2 (if applicable)
— Including crossing angle with ALICE spectrometer bump
— (Alignment of IR2 triplet quadrupoles?)
— Could take a few days (see experience with IP1 and IP5)
m Collide Pb-Pb
— Re-optimise collimation (how?), measurements, etc.

Need to review time requirements with proton experience.

Provide > 4 weeks of physics with Early Scheme for ALICE, ATLAS,
CMS.

Don’'t forget MD time (— Nominal Scheme) with Pb ions

J.M. Jowett, Collimation Working Group, 3/4/2006
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Synchrotron Radiation

m LHC is the first proton storage ring in which synchrotron
radiation plays a noticeable role, (mainly as a heat load

on the cryogenic system)

m It is also the first Aeavy ion storage ring in which
synchrotron radiation has significant effects on beam

dynamics.
— Surprisingly, perhaps, some of these effects are
stronger for lead ions than for protons.

— Nucleus radiates coherently:

Synchrotron radiation loss per turn

U = 4an0nEI0n _47[2 rpElon
4
3Crnionp 3C'A‘rnpp

Z
ion K p

J.M. Jowett, Collimation Working Group, 3/4/2006



Synchrotron Radiation

m Scaling with respect to protons
In same ring, same maagnetic
field

— Radiation damping for Pbis 2/ RIS
twice as fast as for protons .|
m Many very soft photons

e o i”"'" ®
*el8ccco0e

m Critical energy in visible . 3 Raﬁ'at'on dart“f'”gu
o .‘: enhancement 10r a
Spectrum 057, .:.:“ stable isotopes
&
- 7
20 40 60 80

Lead is (almost) best, deuteron is worst.
J.M. Jowett, Collimation Working Group, 3/4/2006 20
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Ny (£) = —| S n,0,, [VuN, (1) - %njx,sg*ljb o
- —— luminosity bu:n-off
; (t) _ €, (t) 28, (t)
§ Tigsx (Nb’ Ex (t> 18 (t)) x
| e, (t) 4 (t)
& (t) B Tissi (Nb (t) L€, (t) V€ (t)) JL ' ,melzg’pe(p_tn}o.se
Bj-M in MAD, full lattice Samping

7x10-10 No radiation damping, Dg=0

6x10-10 —
5x 10710 -
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Y 3x1010
2x10-10
1x10-10 No. of experiments: n_, =0,1,2,3
0 2 4 6 8 10
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7x107 ¢
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BPM

visibility
threshold

Increasing number
of experiments

reduces beam and
luminosity lifetime.
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Summary

m |-LHC Project remains on track for Pb-Pb collisions with
“Early Scheme” at end 2008

— See talk by S. Maury at Chamonix 2006
— No serious performance limits expected
m Move towards Pb-Pb nominal parameters from 2009
— Various performance limits, including collimation
m This is just the first step in the ion programme

J.M. Jowett, Collimation Working Group, 3/4/2006
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Conclusions

m US DOE/NSAC Review 2004:

— “LHC will open up a new regime of ultra-relativistic

heavy-ion physics with significant opportunities for
new discoveries.”

m Added-value for the world-wide investment in LHC.

m Operation of LHC with lead ions limited by new effects,
gualitatively different from protons

— Several effects important around design luminosity.
— Challenge to achieve design luminosity.

m Extensive future programme, colliding p-Pb, Ar-Ar, O-0O,
p-Ar, p-0, ... with further challenges.

J.M. Jowett, Collimation Working Group, 3/4/2006 25
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