

I-LHC Project Overview and Status John Jowett

Heavy Ion Physics Parameters

		SPS	RHIC	LHC	
CM energy/nucleon	$\sqrt{s}/u/[\text{GeV}]$	17	200	5500	$\times 28$
Charged multiplicity	dN _{ch} dy	400	800	> 3000	challenge
Energy density	$\epsilon/[\text{GeV}/\text{fm}^3]$	3	5	15 – 60	denser
Freeze – out volume	V_f / fm ³	$\approx 10^3$	$\approx 10^4$	$\approx 10^5$	larger
QGP lifetime	$ au_{\rm QGP}/[{ m fm}/c]$	≤1	1.5 – 4	> 10	longer
Thermalization time	$ au_0/[\mathrm{fm}/c]$	≥ 1	≈ 0.2	≤ 0.1	faster
	$ au_{ m QGP}/ au_0$	1	6	≥ 30	

With increasing energy, more partons are available, interact more effectively. Thermalized high-T phase established more quickly and lasts longer.

I-LHC Long-Term Planning

Baseline: Lead-Lead collisions

- "Early Pb Scheme" much easier to achieve for 2008 (and 2009?)
 - Allows study of performance limitations.
- "Nominal Pb Scheme" by 2009
 - Pb-Pb is perceived as posing the most difficult accelerator physics problems
- Future "upgrades" not in Baseline:
 - p-Pb collisions under study
 - Effects of revolution frequency difference at injection expected to be *much weaker* than at RHIC
 - lighter ion-ion collisions (e.g. Ca, Ar, O, ...) appear possible without major upgrades, to be studied.

Why Early Beam?

- Easier for injectors, shorter LHC filling time (4 min/ring)
- Keep nominal bunch population (7 10⁷ ions/bunch) to study limitations without risks
- A Luminosity of L=5. 10^{25} cm⁻² s⁻¹ (lower by a factor 20) by fewer bunches (1/10) and $\beta^* = 1$ m (factor 1/2) useful for physics (early results)
- Improved Luminosity lifetime because of larger β^{\star}

Nominal vs. Early Ion Beam: Key Parameters

Parameter	Units	Nominal	Early Beam
Energy per nucleon	TeV/n	2.76	2.76
Initial Luminosity L ₀	cm ⁻² s ⁻¹	1 10 ²⁷	5 10 ²⁵
No. bunches/bunch harmonic		592/891	62/66
Bunch spacing	ns	99.8	1350
β*	m	0.5 (same as p)	1.0
Number of Pb ions/bunch		7 10 ⁷	7 10 ⁷
Transv. norm. RMS emittance	μm	1.5	1.5
Longitudinal emittance	eV s/charge	2.5	2.5
Luminosity half-life (1,2,3 expts.)	Н	8, 4.5, 3	14, 7.5, 5.5

Lead Ion Schedule (post-Chamonix 2006)

ID	Task Name	2006	2007 01 02 03 04 05 06 07 08 09 10 11 1	2008 12 01 02 03 04 05 06 07 08 09 10 11 12	2009	2010 01 02 03 04 05 06
1	P (LHC)					
2	Hardware commissioning					
3	Beam Commissioning					
4						
5	IONS (Early Beam)					-
6	LEIR					
7	PS					
8	SPS					
9	LHC (early Beam)					
	IGNE (Early Beam) Delayed					
11	LEIR					
12	PS					
13	SPS					
14	LHC (early Pean)					
10	IGNO (Early Beam) Delayed					
16	LEIR					
17	PS					
18	SPS					
19	LHC (early Doam)					
20						
21	IONS (Nominal Beam)					
22	LEIR					
23	PS					
24	SPS					
25	LHC (Nominal Beam)					
20	IONO (Heminal Beam) Delayed					
27	LEIR					
28	PS					
29	SPS					
30	LHC (Neminar Beam)					

Electromagnetic Interactions of Heavy ions

QED effects in the peripheral collisions of heavy ions						
Rutherford scattering:	208 Pb ⁸²⁺ + 208 Pb ⁸²⁺ $\xrightarrow{\gamma}$ 208 Pb ⁸²⁺ + 208 Pb ⁸²⁺	Copious but harmless				
Free pair production:	208 Pb ⁸²⁺ + 208 Pb ⁸²⁺ $\xrightarrow{\gamma}$ 208 Pb ⁸²⁺ + 208 Pb ⁸²⁺ + e ⁺ + e ⁻	Copious but harmless				
Electron capture by pair production (ECPP)	${}^{208}\text{Pb}^{82+} + {}^{208}\text{Pb}^{82+} \xrightarrow{\gamma} {}^{208}\text{Pb}^{82+} + {}^{208}\text{Pb}^{81+} + e^+$ Electron can be captured to a number of bound states, not only 1s.	Secondary beam out of IP, effectively off-momentum" $\delta_p = \frac{1}{Z-1} = 0.012$ for Pb				
Electromagnetic Dissociation (EMD)	$ \begin{array}{c} {}^{208} \mathrm{Pb}^{82+} + {}^{208} \mathrm{Pb}^{82+} \longrightarrow {}^{208} \mathrm{Pb}^{82+} + ({}^{208} \mathrm{Pb}^{82+}) * \\ & \downarrow \\ {}^{207} \mathrm{Pb}^{82+} + n \end{array} $	Secondary beam out of IP, effectively off-momentum: $\delta_p = -\frac{1}{A-1} = -4.8 \times 10^{-3}$ for Pb				

(Numerous other changes of ion charge and mass state happen at smaller rates.)

$$\delta(\Delta Q, \Delta A) \simeq \frac{1 + \Delta A/A}{1 + \Delta Q/Q} - 1$$

Nuclear cross sections

J.M. Jowett, Collimation Working Group, 3/4/2006

- Cross-section for Pb totally dominated by electromagnetic processes
- Values for non-Pb ions may need ubward revision
 BFPP(=ECPP) from Meier et al, Phys. Rev. A, 63, 032713 (2001), calculation for Pb-Pb at LHC energy

Total cross - section for ion removal from beam

 $\sigma_{\rm tot} = \sigma_{\rm H} + \sigma_{\rm EMD} + \sigma_{\rm ECPP}$

	$\sigma_{ m H}$	$\sigma_{ m EMD}$	$\sigma_{ m ECPP}$	$\sigma_{ m tot}$
Hydrogen	0.105	0	4.25×10^{-11}	0.105
Helium	0.35	0.002	$1. \times 10^{-8}$	0.352
Oxygen	1.5	0.13	0.00016	1.63016
Argon	3.1	1.7	0.04	4.84
Krypton	4.5	15.5	3.	23.
Indium	5.5	44.5	18.5	68.5
Lead	8	225.	280.756	513.756

Luminosity Limit from BFPP

 208 Pb⁸²⁺ + 208 Pb⁸²⁺ $\xrightarrow{\gamma}$ 208 Pb⁸²⁺ + 208 Pb⁸¹⁺ + e^+

Operational Parameter Space for Pb Ions

Thresholds for visibility on BPMs and BCTs.

5

÷.

Optical Parameters at the IPs (Nominal)

IPopticsTable["CollisionIons", "LHCB1"]

|//NumberForm=

	IP1	IP2	IP5	IP8	IP1.L1
β_x/m	0.55	0.5	0.55	10.	0.55
β _y /m	0.55	0.5	0.55	10.	0.55
x_c/mm	$1.1 imes 10^{-9}$	$-3.59 imes 10^{-9}$	0.5	$-3.18 imes 10^{-9}$	$\texttt{l.l}\times\texttt{10}^{-9}$
y_c/mm	-0.5	$5.77 imes10^{-9}$	$\texttt{2.08}\times\texttt{10}^{-9}$	-0.5	-0.5
$\mathbf{p}_{\mathbf{xc}}/\mu\mathbf{rad}$	$-2.95 imes 10^{-6}$	$2.63 imes 10^{-6}$	142.	-210.	$-2.95 imes 10^{-6}$
$p_{yc}/\mu rad$	143.	-10.	$-7.9 imes 10^{-6}$	-1.81×10^{-7}	143.

IPopticsTable["CollisionIons", "LHCB2"]

//NumberForm=

	IP1	IP2	IP5	IP8	IP1.L1
β_x/m	0.55	0.5	0.55	10.	0.55
β _y /m	0.55	0.5	0.55	10.	0.55
\mathbf{x}_{c}/mm	4.11×10^{-9}	$3.94 imes 10^{-9}$	0.5	$-2.43 imes10^{-8}$	4.11×10^{-9}
y _c /mm	-0.5	$-6.01 imes10^{-9}$	$-2.72 imes10^{-9}$	0.5	-0.5
$\mathbf{p}_{\mathbf{xc}}/\mu\mathbf{rad}$	$-2.79 imes 10^{-6}$	5.5×10^{-6}	-142.	210.	$-2.79 imes10^{-6}$
$p_{yc}/\mu rad$	-142.	10.	-0.000107	$-2.69 imes 10^{-6}$	-142.

Optical Parameters at the IPs (Early)

IPopticsTable["EarlyCollisionIons", "LHCB1"]

/NumberForm=

	IP1	IP2	IP5	IP8	IP1.L1
β_x/m	2.	1.	2.	10.	2.
β _y /m	2.	1.	2.	10.	2.
x_c/mm	$-1.11 imes 10^{-9}$	$2.29 imes 10^{-9}$	0.322	$1.78 imes 10^{-9}$	$3.08 imes 10^{-9}$
y_c/mm	-0.322	$2.78 imes10^{-9}$	3.61×10^{-10}	-2.	-0.322
$\mathbf{p}_{\mathbf{xc}}/\mu\mathbf{rad}$	$2.37 imes 10^{-6}$	$-1.83 imes10^{-6}$	92.	-170.	$1.86 imes 10^{-6}$
$p_{yc}/\mu rad$	92.	$-2.13 imes10^{-6}$	$-1.98 imes10^{-6}$	$8.67 imes 10^{-7}$	92.

IPopticsTable["EarlyCollisionIons", "LHCB2"]

/NumberForm=

	IP1	IP2	IP5	IP8	IP1.L1
β _x /m	2.	1.	2.	10.	2.
β _y /m	2.	1.	2.	10.	2.
\mathbf{x}_{c}/mm	$3.94 imes 10^{-9}$	$3.09 imes 10^{-9}$	0.322	-8.36×10^{-9}	$3.94 imes 10^{-9}$
y_c/mm	-0.322	$-4.5 imes10^{-9}$	$-5.35 imes 10^{-9}$	2.	-0.322
$p_{xc}/\mu rad$	$-1.74 imes10^{-6}$	$1.11 imes 10^{-8}$	-92.	170.	$-1.74 imes10^{-6}$
$p_{yc}/\mu rad$	-92.	$-3.55 imes 10^{-7}$	$-1.07 imes10^{-6}$	$-1.13 imes10^{-6}$	-92.

Beams crossing inside LHC aperture, Nominal, IR2

IRcrossingPlot3D["CollisionsIons", "IR2", 2, 0.25]

Beams crossing, Nominal+EARLY, IR2 (2σ beam)

IRcrossingPlot3D["CollisionIons", "IR2", 2, 0.02]

- Larger frequency swing than with protons, no problem
- Different bunch filling schemes
- RF noise to be clarified (SPS MD to test continuous use)
- Needed to blow-up longitudinal emittance at collision energy (IBS)

- Same *geometrical* transverse beam size and emittance
 - Optics, dynamic aperture, mechanical acceptance, etc. similar to protons.
- Injection and ramp done with exactly the same optics, orbits, corrections, etc. as for protons
 - Should shorten ion commissioning time considerably!
- Colliding in ATLAS, CMS \Rightarrow same squeeze as protons
- Leave IR8 in injection configuration
- Main difference is that IR2 is squeezed to $\beta^* = 2., 1., 0.5 \text{ m}$
 - May or may not be operationally convenient to commission the ion optics first with low-intensity protons.
- Crossing angle at IP2 (1,5?) may be small (includes ALICE muon spectrometer, details in Design Report)
 - Aperture requirements somewhat relaxed w.r.t. protons
 - Operational time for polarity reversals

Plan for Commissioning LHC Rings with Lead Ions (1)

Assume that protons can be collided

- Injection, ramp, squeeze (where applicable) are set up
- Re-commission injection and first turns with single ion "pilot" bunch (close to nominal intensity)
 - Adjust BST
 - Energy matching to different SPS cycle, each ring
 - Should go quickly (magnetic reproducibility...)
 - Deal with any difference of geometric beam size from protons (collimator settings, etc.)
- Set up RF and capture ("few shifts"), instrumentation

Plan for Commissioning LHC Rings with Lead Ions (2)

Re-commission ramp

- Should also go quickly (magnetic reproducibility again)
- Deal with any difference of geometric beam size from protons (collimator settings, etc.)
- Commission squeeze of IP2 (if applicable)
 - Including crossing angle with ALICE spectrometer bump
 - (Alignment of IR2 triplet quadrupoles?)
 - Could take a few days (see experience with IP1 and IP5)
- Collide Pb-Pb
 - Re-optimise collimation (how?), measurements, etc.

Need to review time requirements with proton experience. Provide > 4 weeks of physics with Early Scheme for ALICE, ATLAS, CMS.

Don't forget MD time (\rightarrow Nominal Scheme) with Pb ions

Synchrotron Radiation

LHC is the first *proton* storage ring in which synchrotron radiation plays a noticeable role, (mainly as a heat load on the cryogenic system)

- It is also the first *heavy ion* storage ring in which synchrotron radiation has significant effects on beam dynamics.
 - Surprisingly, perhaps, some of these effects are stronger for lead ions than for protons.
 - Nucleus radiates coherently:

Synchrotron radiation loss per turn

$$U = \frac{4}{3} \frac{\pi r_{\text{ion}} E_{\text{ion}}^{4}}{c^{6} m_{\text{ion}}^{3} \rho} = \frac{4}{3} \frac{\pi Z^{2} r_{p} E_{\text{ion}}^{4}}{c^{6} A^{4} m_{p}^{3} \rho}, \qquad E_{\text{ion}} = \frac{Z}{A} E_{p}$$

Synchrotron Radiation

Scaling with respect to protons in same ring, same magnetic
$$\begin{split} \frac{u_{\rm ion}^c}{u_{\rm p}^c} &\simeq \frac{Z^3}{A^3} \simeq 0.061, \\ \frac{\tau_{\rm ion}}{\tau_{\rm p}} &\simeq \frac{A^4}{Z^5} \simeq 0.5 \end{split}$$
 $\frac{U_{\rm ion}}{U_{\rm p}} \simeq \frac{Z^6}{A^4} \simeq 162,$ field $\frac{N_{\rm ion}}{N_{\rm p}} \simeq \frac{Z^3}{A} \simeq 2651,$ $\frac{\tau_{\rm p}}{\tau_{\rm ion}}$ 2 Radiation damping for Pb is twice as fast as for protons 1.5 Many very soft photons Radiation damping Critical energy in visible enhancement for all spectrum 0.5 stable isotopes Ζ

Lead is (almost) best, deuteron is worst.

40

60

20

80

Evolution during a fill

C

Luminosity evolution during a fill: Early scheme

Summary

I-LHC Project remains on track for Pb-Pb collisions with "Early Scheme" at end 2008

- See talk by S. Maury at Chamonix 2006
- No serious performance limits expected
- Move towards Pb-Pb nominal parameters from 2009
 - Various performance limits, including collimation
- This is just the first step in the ion programme

US DOE/NSAC Review 2004:

- "LHC will open up a new regime of ultra-relativistic heavy-ion physics with significant opportunities for new discoveries."
- Added-value for the world-wide investment in LHC.
- Operation of LHC with lead ions limited by new effects, qualitatively different from protons
 - Several effects important around design luminosity.
 - Challenge to achieve design luminosity.
- Extensive future programme, colliding p-Pb, Ar-Ar, O-O, p-Ar, p-O, ... with further challenges.