Modified Collimation Layout & Optics (for cryogenic collimators in IR3 with maximum 4.5 m displacement of elements)

IR3 Optics overview, Beam 1

Beam 2 has F and D quads inverted, but imperfect (left-right, *x-y*) asymmetry, so has to be treated separately.

IR3 optics is **constant** – no change with energy, β -squeeze, etc.

Making space, IR3 right, Beam 1

Move outer group of elements 4.5 m away from IP into missing dipole space.

Move inner group of elements 4.5 m towards IP to (roughly) compensate change in geometry.

Similarly on left of IP3.

Zoom on displacements along reference orbit

This vacates enough space in the right places to install the cryogenic collimators.

N.B. this is in Courant-Snyder coordinate *s*, so we do not see the change in geometry of the LHC.

Global Cartesian Coordinate System

- Global coordinates with origin at IP1
 In the straight section including IP3, it happens that:
 - X is longitudinal
 - Y is vertical
 - Z is "radial"
 - w.r.t. Courant-Snyder coordinates.
- Use (Z,X) as coordinates in the machine plane

Displacements of reference orbit, Beam 1

Displacements of moved elements, Beam 1, left of IP3

In the global cartesian frame, the displacements of the outer and inner groups of elements include a component from the angle ("curvature") of the initial reference orbit.

MAD - and the LHC Layout Database - use the "beads on a necklace" method of laying out the machine so everything downstream of IR3 moves and the ring does not close ... this is not real of course but has to be corrected in our description.

		∆Z/m	$\Delta X / m$
	MCO.11L3.B1	-0.1835	4.496
	MCD.11L3.B1	-0.1835	4.496
	MB.B11L3.B1	-0.1835	4.496
Outer	MCS.B11L3.B1	-0.1835	4.496
group	MB.A11L3.B1	-0.1835	4.496
5 1	MCS.A11L3.B1	-0.1835	4.496
	BPM.10L3.B1	-0.1835	4.496
	MQ.10L3.B1	-0.1835	4.496
	MQTLI.10L3.B1	-0.1835	4.496
	MCBCH.10L3.B1	-0.1835	4.496
		$\Delta Z / m$	$\Delta X / m$
	MCO.8L3.B1	0.000028	865 -4.501
	MCD.8L3.B1	0.00002	865 -4.501
La se	MB.B8L3.B1	0.00002	865 -4.501
Inner	MCS.B8L3.B1	0.000028	865 -4.501
group	MB.A8L3.B1	0.000028	865 -4.501
	MCS.A8L3.B1	0.00002	865 -4.501
	E.DS.L3.B1	0.00002	865 -4.501
	BPM 713 B1	0 00002	865 -4 501
	MO 713 B1	0.00002	865 -4 501
	MOTT 713 P1	0.00002	965 4.501 965 4.501
	MODOX 712 D1	0.000020	DGS -4.501
	MCBCV./LS.BI	0.000028	000 -4.501
	DFBAE./L3.B1	0.000028	565 -4.501

.

1	$\Delta Z / m$	$\Delta X/m$
IP1	0	0
IP2	0	0
IP3	0.00002865	-0.001404
IP4	0	-0.002808
IP5	0	-0.002808
IP6	0	-0.002808
IP7	0	-0.002808
IP8	0	-0.002808
IP1.L1	0	-0.002808

Corrected layout

Small negative displacements of all elements downstream of IR3 along the reference orbit restores them to their original position in the global cartesian system and closes the ring.

	∆Z/m	$\Delta X/m$
IP1	0	0
IP2	0	0
IP3	0.00002865	0
IP4	0	-6.294×10^{-10}
IP5	0	-6.294×10^{-10}
IP6	0	-6.303×10^{-10}
IP7	0	-6.330×10^{-10}
IP8	0	-6.330×10^{-10}
IP1.L1	0	-6.331×10^{-10}

New sequence descriptions created for both rings. LHC circumference is changed by -2.808 mm.

/afs/cern.ch/eng/sl/ilhc/JMJ/CryoCollimatorOptics/IR3/LHCCC.seq

Use new sequence names LHCB1CC, LHCB2CC.

Change in layout perturbs the optical functions, giving about 20% β -beating which must be corrected everywhere outside IR.

Optics perturbation in IR3 would cause severe aperture loss.

Rematch IR3 for each ring without using the common quadrupoles that affect both.

Rematch of IR3, Beam 1

Perfect match – same transfer matrix over IR3 - (also for Ring 2) so can be used in modular way with all existing LHC optics configurations.

Adjusted β -function peaks so available aperture is not changed significantly.

Perfect match – same transfer matrix over IR3, so can be used in modular way with all existing LHC optics configurations.

Adjusted β -function peaks so available aperture is not changed significantly.

Had to use more quadrupoles than for Beam 1.

Quadrupole strengths after rematch, Beam 1

	K1NAMES	K1MIN	Kl	K1MAX	K1CHECK	
MQTLI.10L3.B1	KQTL10.L3B1	-0.083276	-0.0019737	0.083276	True	
MQTLI.B9L3.B1	KQTL9.L3B1	-0.083276	0.002172	0.083276	True	
MQTLI.A9L3.B1	KQTL9.L3B1	-0.083276	0.002172	0.083276	True	
MQTLI.8L3.B1	KQTL8.L3B1	-0.083276	-0.0071218	0.083276	True	
MQTLI.7L3.B1	KQTL7.L3B1	-0.083276	0.00838	0.083276	True	
MQTLH.F6L3.B1	KQ6.L3B1	-0.059959	0.0025123	0.059959	True	
MQTLH.E6L3.B1	KQ6.L3B1	-0.059959	0.0025123	0.059959	True	
MQTLH.D6L3.B1	KQ6.L3B1	-0.059959	0.0025123	0.059959	True	
MQTLH.C6L3.B1	KQ6.L3B1	-0.059959	0.0025123	0.059959	True	All quads are
MQTLH.B6L3.B1	KQ6.L3B1	-0.059959	0.0025123	0.059959	True	
MQTLH.A6L3.B1	KQ6.L3B1	-0.059959	0.0025123	0.059959	True	comfortably within
MQTLH.A6R3.B1	KQ6.R3B1	-0.059959	-0.0034277	0.059959	True	$\frac{1}{2}$
MQTLH.B6R3.B1	KQ6.R3B1	-0.059959	-0.0034277	0.059959	True	pounds at 7 rev.
MQTLH.C6R3.B1	KQ6.R3B1	-0.059959	-0.0034277	0.059959	True	
MQTLH.D6R3.B1	KQ6.R3B1	-0.059959	-0.0034277	0.059959	True	
MQTLH.E6R3.B1	KQ6.R3B1	-0.059959	-0.0034277	0.059959	True	
MQTLH.F6R3.B1	KQ6.R3B1	-0.059959	-0.0034277	0.059959	True	
MQTLI.7R3.B1	KQTL7.R3B1	-0.083276	0.0022552	0.083276	True	
MQTLI.8R3.B1	KQTL8.R3B1	-0.083276	-0.0049622	0.083276	True	
MQTLI.A9R3.B1	KQTL9.R3B1	-0.083276	0.0010513	0.083276	True	
MQTLI.B9R3.B1	KQTL9.R3B1	-0.083276	0.0010513	0.083276	True	
MQTLI.10R3.B1	KQTL10.R3B1	-0.083276	0.0029929	0.083276	True	

/afs/cern.ch/eng/sl/ilhc/JMJ/CryoCollimatorOptics/IR3/ LHCCryoCollimatorOpticsIR3.str

To be used on top of any other set of strengths for LHC optics V6.503, with the new sequences LHCB1CC, LHCB2CC.

Quadrupole strengths after rematch, Beam 2

	KINAMES		KIMIN		KL	KIIMAX	K	1 CHECK	
MQTLI.11L3.B2	KQTL11.L3B2	~	0.083276	~	0.0029077	0.083276		True	
MQTLI.10L3.B2	KQTL10.L3B2	~	0.083276		0.00093013	0.083276		True	
MQILI.B9L3.B2	KQTL9.L3B2	~	0.083276	~	0.00013174	0.083276		True	
MQTLI.A9L3.B2	KQTL9.L3B2	~	0.083276	~	0.00013174	0.083276		True	
MQTLI.8L3.B2	KQTL8.L3B2	~	0.083276		0.0022066	0.083276		True	
MQTLI.7L3.B2	KQTL7.L3B2	~	0.083276		0.00084624	0.083276		True	
MQIILH.F6L3.B2	KQ6.L3B2	~	0.059959	~	0.0025024	0.059959		True	
MQIILH.E6L3.B2	KQ6.L3B2	~	0.059959	~	0.0025024	0.059959		True	All quads are
MQIILH.D6L3.B2	KQ6.L3B2	~	0.059959	~	0.0025024	0.059959		True	
MQIILH.C6L3.B2	KQ6.L3B2	_	0.059959	_	0.0025024	0.059959		True	comfortably within
MQTLH.B6L3.B2	KQ6.L3B2	~	0.059959	~	0.0025024	0.059959		True	
MQTLH.A6L3.B2	KQ6.L3B2	~	0.059959		0.0025024	0.059959		True	bounds at / IeV.
MQTLH.A6R3.B2	KQ6.R3B2	_	0.059959		0.0027831	0.059959		True	
MQTLH.B6R3.B2	KQ6.R3B2	~	0.059959		0.0027831	0.059959		True	
MQTLH.C6R3.B2	KQ6.R3B2	_	0.059959		0.0027831	0.059959		True	
MQTLH.D6R3.B2	KQ6.R3B2		0.059959		0.0027831	0.059959		True	
MQTLH.E6R3.B2	KQ6.R3B2	~	0.059959		0.0027831	0.059959		True	
MQILH.F6R3.B2	KQ6.R3B2	~	0.059959	_	0.0027831	0.059959		True	
MQTLI.7R3.B2	KQTL7.R3B2		0.083276		0.0027615	0.083276		True	
MQTLI.8R3.B2	KQTL8.R3B2	~	0.083276	~	0.0016878	0.083276		True	
MQTLI.A9R3.B2	KQTL9.R3B2	~	0.083276	~	0.0027554	0.083276		True	
MQTLI.B9R3.B2	KQTL9.R3B2		0.083276		0.0027554	0.083276		True	
MQTLI.10R3.B2	KQTL10.R3B2	~	0.083276	~	0.00020587	0.083276		True	
MQTLI.11R3.B2	KQTL11.R3B2		0.083276		0.0013974	0.083276		True	

/afs/cern.ch/eng/sl/ilhc/JMJ/CryoCollimatorOptics/IR3/ LHCCryoCollimatorOpticsIR3.str

To be used on top of any other set of strengths for LHC optics V6.503, with the new sequences LHCB1CC, LHCB2CC.

Aperture of nominal IR3, Beam 1 at injection

(n_1 is a quantity conventionally used to assess aperture available to beams in the LHC. It includes *x* and *y* planes and various "tolerances" in a single number according to a recipe coded in MAD. Normally require $n_1 > 7$.) *N.B. usual optics has low n1 in IR3.*

Cryo-collimator optics IR3, Beam 1 at injection

 n_1 of the cryo-collimator optics is different

Aperture of nominal IR3, Beam 2 at injection

Somewhat different from reflected Beam 1

n_1 of the cryo-collimator optics is different

n₁ before and after, Ring 1, IR3

Some improvement in all worst places

Slight degradation in one other places

n₁ before and after, Ring 2, IR3

Conclusions

- A new "cryo-collimator" layout for maximum
 4.5 m shift of the dipoles and Q10 has been worked out
- n Optics for both beams rematched with general improvement in aperture over standard IR3 optics
 - Reduced in one place for Beam 2