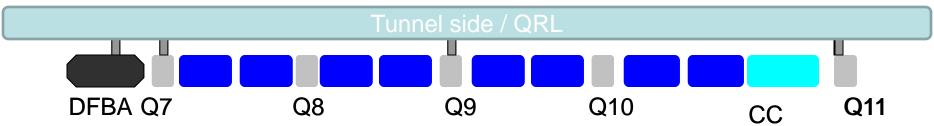
Time/resources of an intervention on continuous cryostat

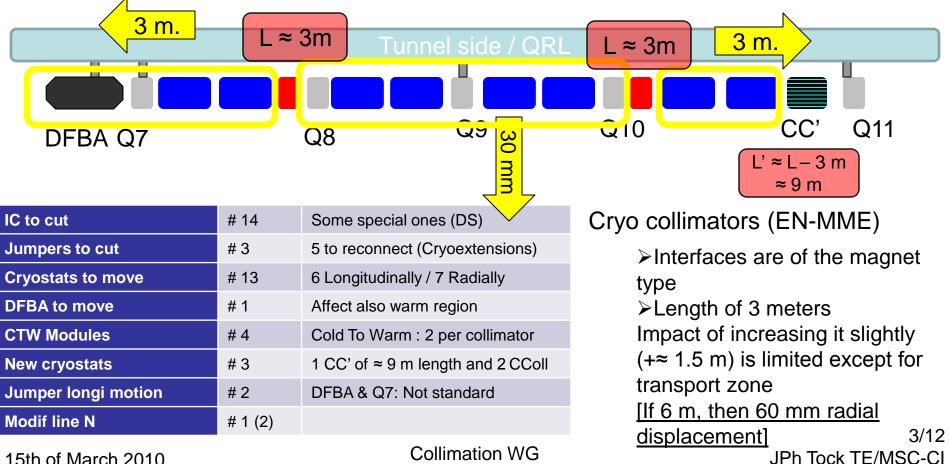
for cryo-collimators

Outline (10 min.)

- Introduction
- Baseline / Alternatives
- FP420 Connection Cryostats for collimators (V Parma)
- Installation schedule
- Budget estimate
- Planning : With splices or later ?
- Closing remarks

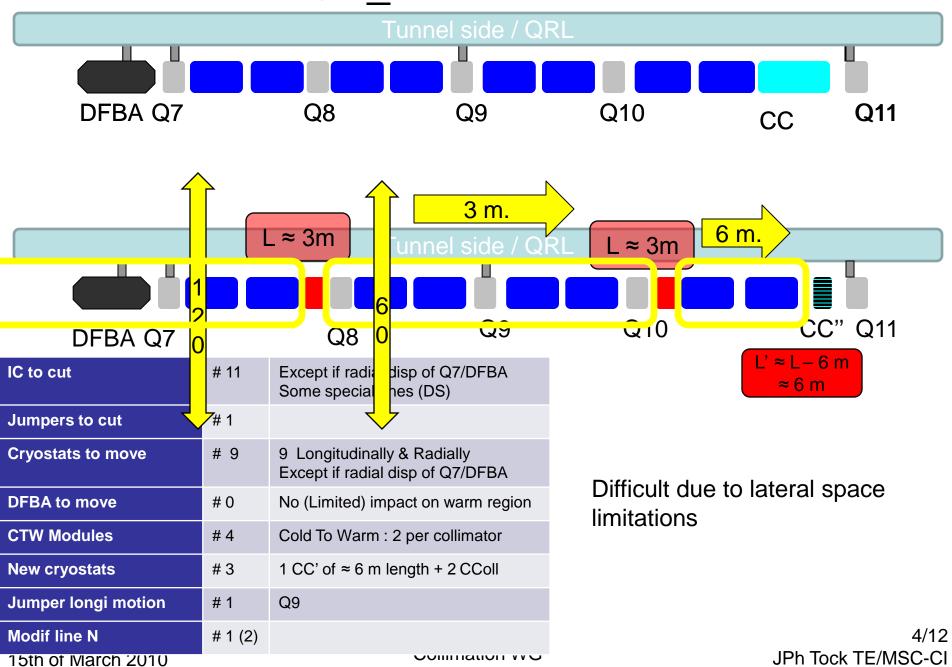
Introduction (R Assmann)


Present configuration (Phase I collimation) does not allow safe operation at nominal intensity and energy


Phase 1 provides optimum robustness but ideal performance limited to ~40% of nominal intensity, less with imperfections. Phase 2 is prepared to maximum and allows nominal and ultimate intensities!

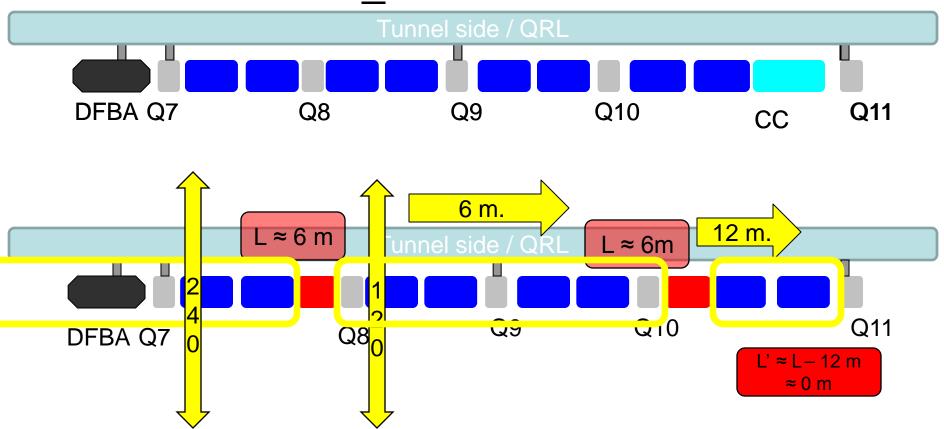
Phase II collimation includes many interventions : cryo collimators at P3/P7 (P2)

IR	Hardwar 4(6) DS zones concerned : L3, R3, L7, R7, (L2,R2)								
	TCLP instal	instal							
		Wa	<u>rmed-up</u> : 23,34,67,78						
2	TCTH installed	2	Improve signal acceptance in ZDC						
	TCRYO installed	2	Remove limit on ion luminosity						
3	TCSM installed	8	Lower impedance $(1/2)$, faster setup (h \rightarrow s), longer lifetime LSS3						
	Shift positions of 24 SC magnets by 3m, 3cm TCRYO installed		Space for collimators at critical loss locations						
5	TCLP installed	2	Interaction debris for nominal luminosity (after removal of Roman Pots)						
	TCTH, TCTVA moved	4	Phase 1 IR upgrade (if change in D2-D1 region)						
	TCT (new type?) installed		Phase 1 IR upgrade (reduced aperture in matching section)						
6	TCLA installed	2	Reduce quench risk after TCDQ						
7	TCSM		Lower impedance (1/2), faster setup (h \rightarrow s), longer lifetime (x 3), lower R2E (1/6 – 1/2)						
	Shift positions of 24 SC magnets		Space for collimators at critical loss locations						
	by 3m, 3cm		2/12						
15	h of Marstalledo	4							

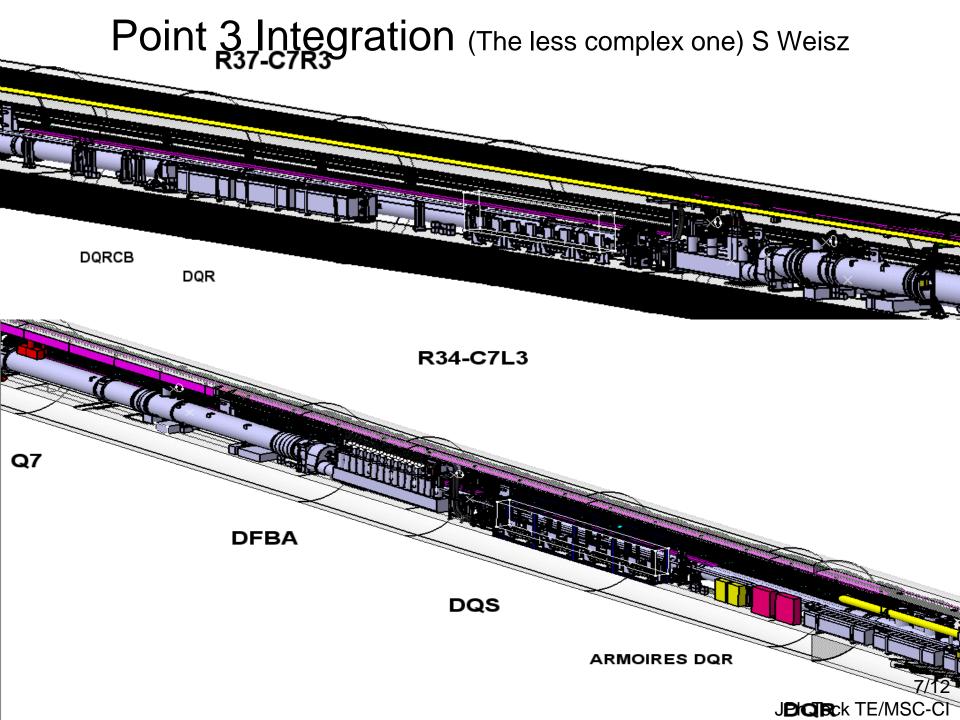

DSR : Baseline (The only studied)

15th of March 2010

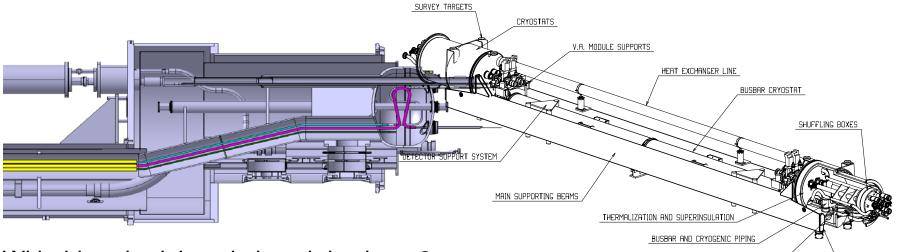
DSR_: "Alternative 1"



Comparison baseline and alternative


Parameter	Baseline	Alternative	Comment
IC to cut	14	11	
Jumpers to cut	3	1	DFBA & Q7
Cryostats to move	13 (6/7)	9	
DFBA to move	1	0	Affects warm regions
CTW Modules	4	4	
New cryostat	1	1 sł	Length: 9 m/ 6m (TBC)
Jumper longi motion	2	2	Cryogenics extension
Modif line N	1-2	1-2	

Not studied for integration reasons and the difficulty of this alternative is increasing with the length of the cryogenics collimators


DSR_: "Alternative 2"

VERY difficult due to lateral space limitations

FP420 CC for CryoCollimators (V Parma)

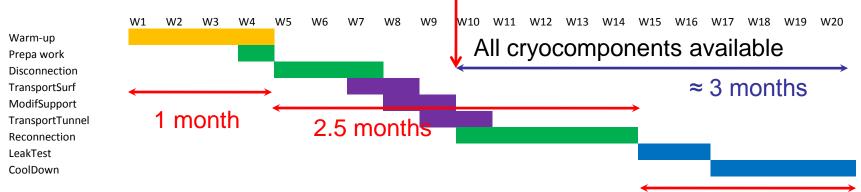
With this schedule, min length is about 6 m. Hard limit with more time is to be assessed

Busbars are the critical component for the schedule.

TRANSPORT TOOLING

JPh Tock TE/MSC-CI

		20)10		2011		2012				2013					
Activity	1st QTR	2nd QTR	3rd QTR	4th QTR	1st QTR	2nd QTR	3rd QTR	4th QTR	1st QTR	2nd QTR	3rd QTR	4th QTR	1st QTR	2nd QTR	3rd QTR	4th QTR
Design/drafting																
Engineering																
Components production	nponents production Critical path defined by bus-bars: 1y production															
Construction of 1st CC																
Construction of 2nd CC												K				
Construction of 3rd CC																
Construction of 4th CC																


Same is true for the new CC (In parallel)

(Same resources partially) 15th of March 2010

Ready for one IR at 4th QTR 2012

(No cold test planned but recommended)_{8/12}

Simplified schedule (one side of IR)

- + Total : 5 months per side of IR but partial parallelism possible 1.5 months
- + Second front (2nd side of <u>same</u> IR) : Extra 4 weeks
- + 2 shifts of 12-15 persons each (excluding transport)
- + Transport during the night
- + No cold test of cryomagnets before lowering
- + Assumes that trained resources are available
- + DFBA in parallel
- + Cryogenics extensions integrated
- + Can fit in a 6 months shutdown
- + If in parallel with splices, resources availability will be critical

Material budget estimate (Preliminary) Per side of IR [To be X 4 (6)]

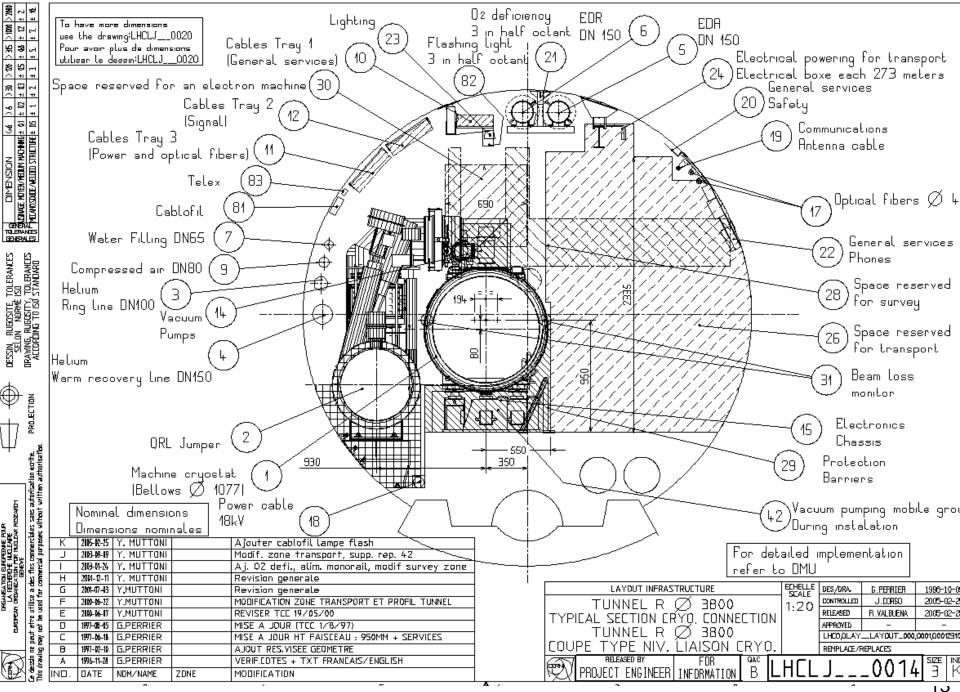
Activity	[kCHF] FSU + comp.	Remark
Interconnection	493	64 for splices
DFBA	164	
Cryoextensions	88	
nCC	400	Not cryocollimators
<u>TOTAL</u>	1145	*4 = 4.6 MCHF *6 = 6.9 MCHF

Not considered :

- Warm-up, cooldown, recommissioning costs
- Integration studies
- Modifications of environment
- Impact of working in a radioactive environment
- Optimised for cryocollimators schedule (Neither for money nor for production efficiency)

In parallel with splices ?

If yes, implies "warm" cryo collimators for schedule reasons


	With splices	Few months later	2-3 years later	Remark
Trained resources	Critical	ОК		Later will smooth the workload
ALARA	+	+		Really critical ?
Budget	+/-	+/-	+/-	Limited impact (5%)
Preparation	-	+ /-	+ +	Cold CColl could be envisaged later
Physics (Luminosity)	+ +	+ +		When will it limit LHC?

Closing remarks

- Not necessary to decide NOW on the installation time
- But design and study for "warm" cryo-collimators shall start/continue/increase
- The situation could be reviewed in 6 months
 - •More info on actual LHC limitations due to collimation
 - •Integration can be studied in more details
 - •Production(CC and Ccollimators) schedule can be refined
- Can the splices consolidation be delayed to give more time for CC production?
- <u>Availability of experienced resources is a key & critical parameter</u>
 <u>Implications of working in radioactive environment have to be assessed</u>

Thanks to A Bertarelli, 7 Bertinelli, R Folch, V Parma, A Perin, S Weisz

15th of March 2010

04/03/2010

Collimators in DS