

Calculation of Water Activity in Point 7

SC/RP J. Vollaire, M. Brugger, S. Roesler joachim.vollaire@cern.ch

Calculation of Water Activity in Point 7

Production of radioactive nuclei in water

Production on Oxygen atom (H_2O)

	Half Life	Decay modes and energy	
³ H	12.35 y	$100 \% \beta^{-}, E_{ave} = 5.68 \times 10^{-3} MeV$	
⁷ Be	53.3 d	89.7 % β^+ , Electron capture	
	20.4	$10.3 \% \gamma, E_{ave} = 0.4776 \text{ MeV}$	–
¹¹ C	20.4 m	99.8 % β^+ , $E_{ave} = 3.86 \times 10^{-1} MeV$	÷
¹⁴ C	5730 y	$100 \% \beta^+, E_{ave} = 4.95 \times 10^{-2} MeV$	
13 N	9.97 m	99.8 % β^+ , $E_{ave} = 4.92 \times 10^{-1} MeV$	
¹⁴ O	71 s	99.9 % β^+ , $E_{max} = 1.81$ MeV	
Ŭ		0.6 % β^+ , $E_{max} = 4.12 \text{ MeV}$ 99 % γ , $E = 2.312 \text{ MeV}$	
¹⁵ O	122 s	99.9 % β^+ , $E_{ave} = 7.35 \times 10^{-1} MeV$	

Trace elements can lead
to the production of other
nuclei as ²⁴Na

- Most critical nuclei are ³H and ⁷Be

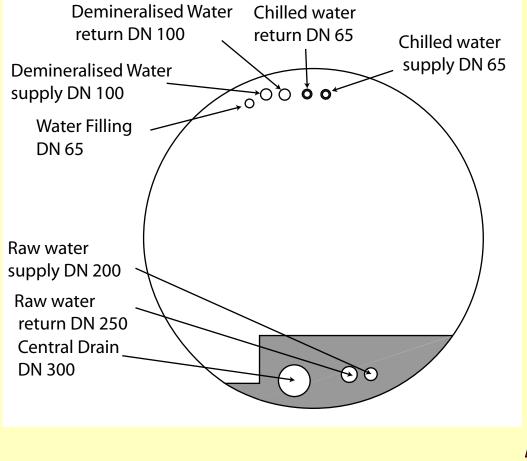
- ⁷Be has a specific behaviour (filters)

Release of radioactive water / CERN policy

To consider effluents as radioactive two conditions must be fulfilled :

- The specific activity (Bq/Kg) exceeds 1 % of the exemption limit
- The absolute activity released exceeds 100 times the absolute exemption limit \mbox{LE}_{abs} expressed in Bq

Based on Swiss Legislation but could be accepted by french authorities for the LHC operation (INB)


	Specific activity	Absolute activity
	(Bq/kg)	(Bq)
³ H	6.0×10^{03}	$6.0 ext{x} 10^{07}$
⁷ Be	3.0×10^{03}	$3.0 \mathrm{x10}^{07}$

Exemption limit (LE): ^{3}H : $6 \times 10^{5} \text{ Bg/kg}$ $^{7}Be : 4x10^{5} Bq/kg$

In any case in Points 6,7 and 8 authorisation from the environmental section is required due to the low flow rate of the receiving streams Authorising releases of radioactive water into the environment, P. Vojtyla (EDMS 342244)

Different water pipe in the tunnel in Point 7

Tunnel Cross Section in Point 7

FLUKA used for the calculations

- Demineralised water circuit (supply and return)
- Chilled water circuit (supply and return)
- Water Filling pipe
- Raw water supply pipe
- Raw water reject pipe
- Drain pipe

The presentation will focus on

- Circuits Description
- Activity calculation
- Release scheme

Water benchmark experiment at CERF Validity of FLUKA for water activation calculation in the LHC? SPS secondary pulsed beam, 120 GeV (1/3 protons, 2/3 pions, 1.5 % kaons) Irradiation of water sample

1. Treated Water

4. Raw Water

2. Demineralised water

3. Infiltration water

Detailed

Chemical Analysis

Simulation of the experimental setup

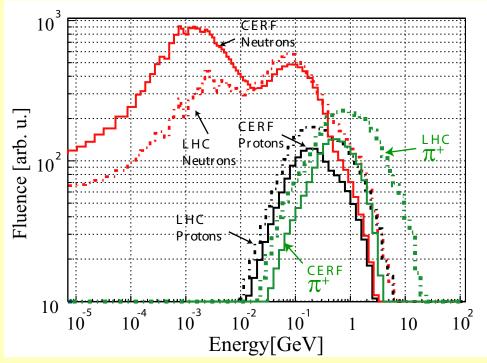
Beam characteristics measurement Comparison FLUKA / experiment

Gamma spectroscopy measurement using a Germanium detector and ³H activity determination with a liquid scintillation counter

Results from the chemical analysis

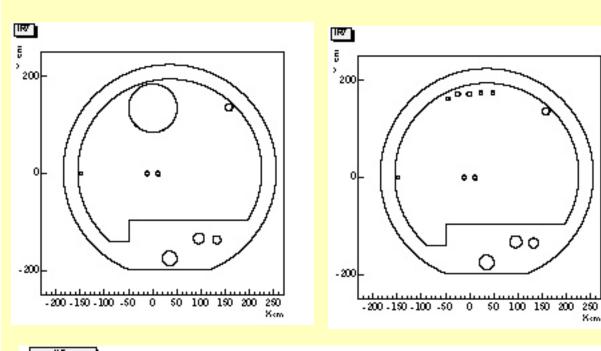
	PA3	Appoint	Deconc.	Distilled	
Н	1.12E+01	1.12E+01	1.12E+01	1.12E+01	Exact composition taken
0	8.88E+01	8.88E+01	8.88E+01	8.88E+01	into account in the FLUKA
С	4.08E-03	1.16E-02	1.14E-02		calculation
N	5.90E-05				
SiO ₂	2.52E-04	3.76E-04	2.02E-04		
Si	1.18E-04				Different traces element
Ca	6.90E-03	3.77E-03	7.13E-03		
Mg	5.20E-04	5.70E-04	1.10E-03		composition for the different
Sr	1.80E-05				samples
Na	2.13E-04	8.31E-04	1.67E-03		•
K	4.60E-05	1.56E-04	3.15E-04		
Li	2.00E-03				Nuclei production on trace
Fe	2.00E-06	2.80E-05	1.14E-04		•
Zn	1.00E-06	4.00E-06	2.48E-04		elements can be benchmarked
Cl	1.00E-04	7.50E-04	2.96E-03		
SO ₄	1.08E-03	4.09E-03	7.78E-03		
F	2.60E-05				

Results of the benchmark experiment


	Ratio				
	Measu	Measurement / Simulation			
	²⁴ Na	³ H	⁷ Be		
Treated Water	1.16(9.8%)	2.45(4.1%)	1.00(9.8%)		
Demineralised	-	2.49(4.1%)	-		
Raw water	1.15(15%)	2.52(4.1%)	1.10(15%)		
Infiltration	1.02(38%)	2.69(4.1%)	1.09(9.8%)		
Average	1.11(23%)	2.54(4.1%)	1.07(8.1%)		

- FLUKA underestimates the ³H production
 - Excellent agreement for ²⁴Na and ⁷Be

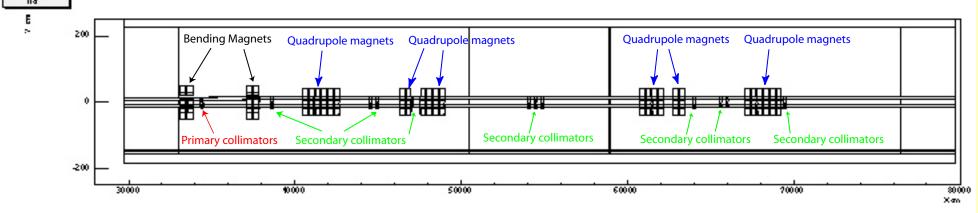
Are those results valid for LHC calculation ?


Simulated fluence in a water bottle and in one of the LHC water pipe

correction factor will be applied to LHC calculation for ³H

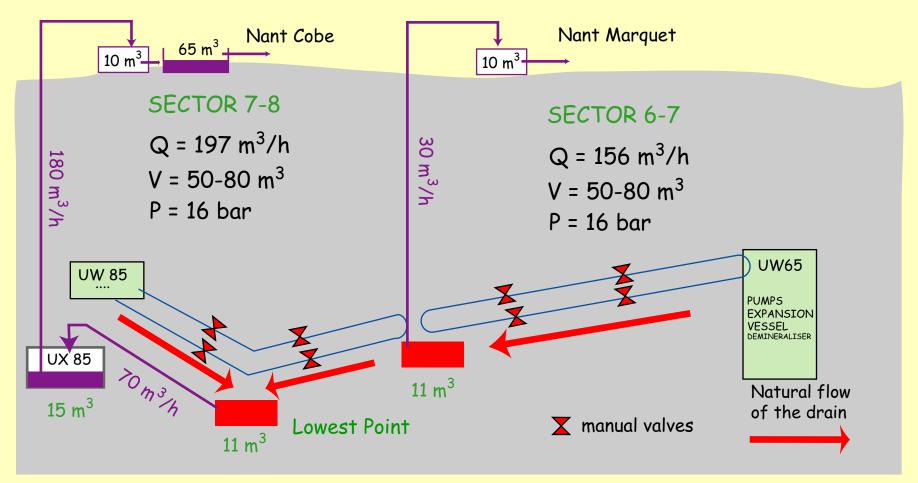
Calculation of residual nuclei production with FLUKA

FLUKA geometry used for air activation (M.Brugger)

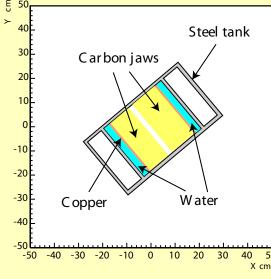


Small changes

- Air duct removed
- New pipe locations

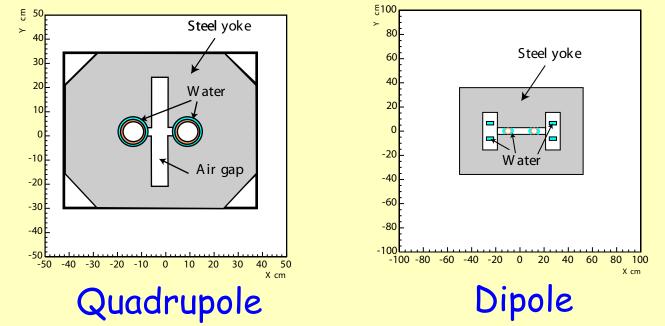

Characteristics

- 2x2 Bending magnets
- 2x12 Quadrupoles magnets
- 1x3 Primary collimators
- 1x11 Secondary collimators


The Demineralised Water Circuit

- Two different circuits supply Point 7 with demineralised water
- Used to cool several equipments such as collimator, warm magnets....
- To empty the DW circuits the central drain is used (oil in Point 7&8) Point 8 Point 7 Point 6

Equipments cooled with demineralised water


- Water present in the pipe (2xDN100) and used to cool equipments
- Each device are connected to the supply and return pipes (in the simulation)

Collimator

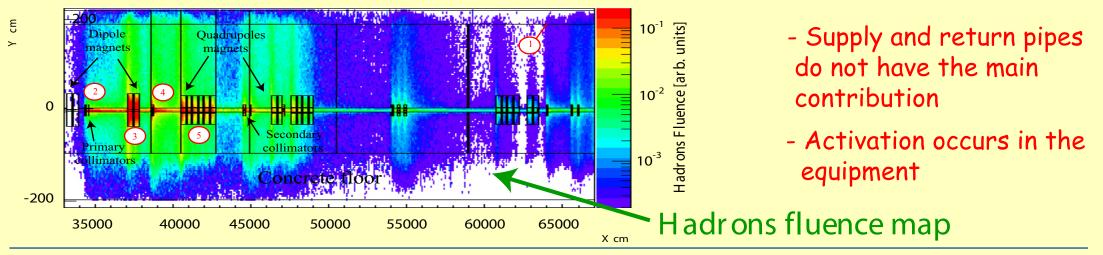
(Collimation project web site)

- The demineralised water is closed to the beam, radioactive nuclei are produced in the main pipes and in the equipments

The Demineralised Water Circuit

- Simulation length equal to 500 m, particle which are able to induce radioactive nuclei are transported within the length of the simulation

	R eal V olume	Simulated Volume	Flexible hose V olume	Individual	
Collimator	1ℓ	1.5 <i>l</i>	3.9 <i>l</i>	connections	
Quadrupole	30 <i>l</i>	20 <i>l</i>	3.3 ℓ		
Dipole	20 <i>l</i>	30 <i>l</i>	3.4 ℓ		
E ntire circuit	50 m ³	4000 <i>l</i>			
volumes are indicated for one module 500 m					


volumes are indicated for one module

Radioactive nuclei production per lost protons and per volume units

Normalisation to the real volume

Some results for ³H and ⁷Be production

	³ H	⁷ Be	³ H	⁷ Be
	nuclei/l/p	nuclei/l/p	nuclei/p	nuclei/p
Supply Pipe (1)	1.6x10 ⁻⁰⁴	2.5×10^{-05}	6.3x10 ⁻⁰¹	9.7x10 ⁻⁰²
3rd Primary(2)	1.4×10^{-01}	2.6x10 ⁻⁰²	2.9x10 ⁻⁰²	5.1x10 ⁻⁰²
1 st Dipoles(3)	1.7x10 ⁻⁰¹	2.1x10 ⁻⁰²	9.8x10 ⁻⁰¹	1.2×10^{-01}
1 st Secondary(4)	4.9×10^{-01}	7.0x10 ⁻⁰²	4.9×10^{-02}	7.0×10^{-02}
1 st Quadrupole(5)	1.6x10 ⁻⁰²	2.2×10^{-03}	4.8x10 ⁻⁰³	6.7x10 ⁻⁰²

Activity calculatin for ³H and ⁷Be

Production of radioactive nuclei per lost protons

	³ H nuclei/p	⁷ Be nuclei/p
Main Pipes	1.3	0.20
All Collimators	1.3	0.17
All Dipoles	1.9	0.24
All Quadrupoles	2.0	0.30
Total	6.4	0.90

- ⁷Be concentration is close to saturation
- ⁷Be will be caught in the ions exchangers
- ³H concentration will double if the water is used for two years

Activity Calculation

$$A_{i} = Y_{i} \frac{N_{p}}{t_{irr}} \left(1 - \exp(-\lambda_{i} t_{irr})\right)$$

> Specific Activity $a_i = \frac{A_i}{V}$

Activity of ³H and ⁷Be

Swiss	legis	lation :	
-------	-------	----------	--

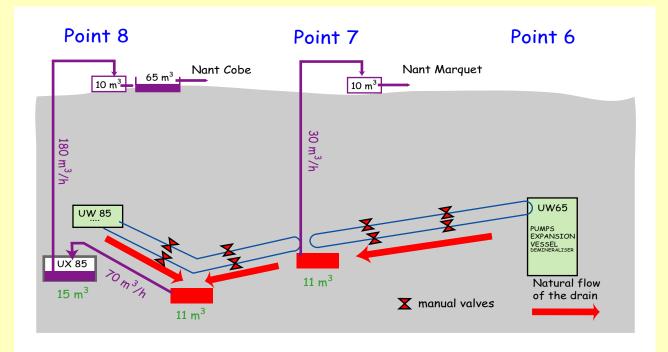
	Specific activity	Absolute activity
	(kBq/kg)	(MBq)
³ H	6.0	60
⁷ Be	3.0	30

two conditions must be fulfilled at the same time to consider water as radioactive

Ultimate Losses and one year of operationTritium activity*7Be activity* $A_i = 676 \pm 7 \text{ MBq}$ $A_i = 3150 \pm 7 \text{ MBq}$ $a_i = 6.76 \pm 0.07 \text{ kBq}/\ell$ $a_i = 31.5 \pm 0.5 \text{ kBq}/\ell$

Production Yield corresponding to phase 1 collimator !

Total volume of the circuit = $2 \times 50 \text{ m}^3$

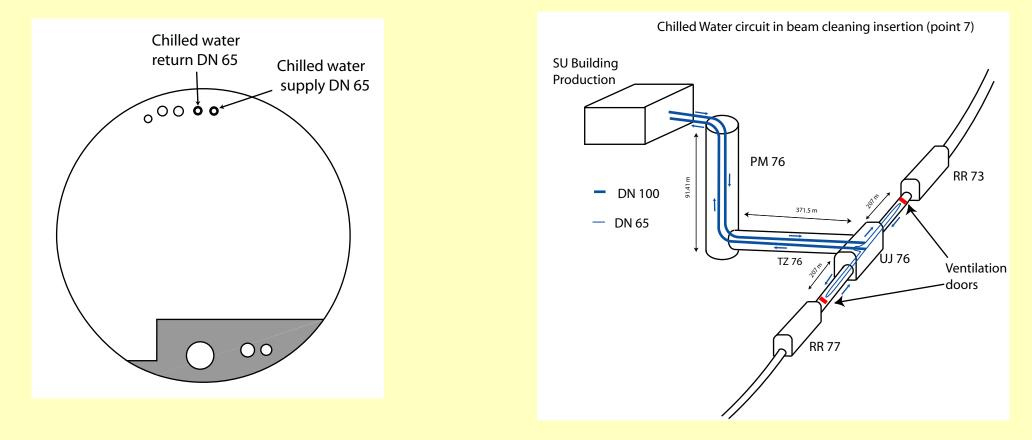

Nominal Losses and one year of operationTritium activity*7Be activity* $A_i = 428 \pm 4 \text{ MBq}$ $A_i = 2000 \pm 3 \text{ MBq}$ $a_i = 4.28 \pm 0.04 \text{ kBq}/\ell$ $a_i = 20.0 \pm 0.3 \text{ kBq}/\ell$

⁷Be concentration calculated without taking into account the effect of the filters

Statistical uncertainty

What to do with this water ?

- Possibility to take samples in the UW cavern an purge the circuit before the activity level becomes critical (CERN detection limit of the order of a few Bq/ ℓ)
- Water can only be brought back to the surface after being mixed with the so called clean water (lot of hydrocarbons)
- Partly open decantation basin at the surface for hydrocarbons/water separation / other solutions being discussed (truck, no big stream...)


A few pictures

Chilled Water Circuit

- Closed circuit used to cool ventilation convectors
- Dilution at the surface : big tank of 30 m³ + other circuits used for air handling → 60 m³
- Radioactive water expected in the surface buildings
- Circuit equipped with filter \implies Should catch ⁷Be

Chilled Water Circuit

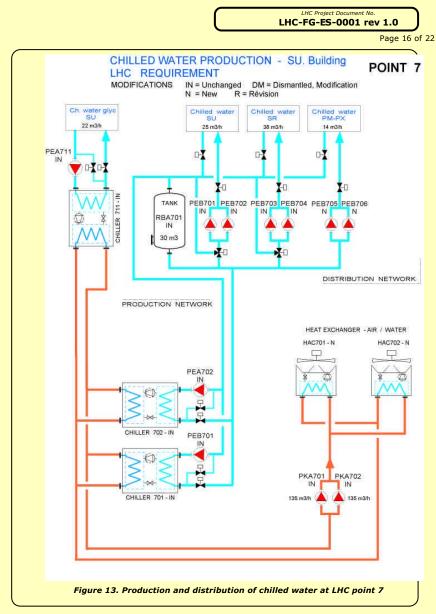
Specific

activity

Radioactive nuclei production

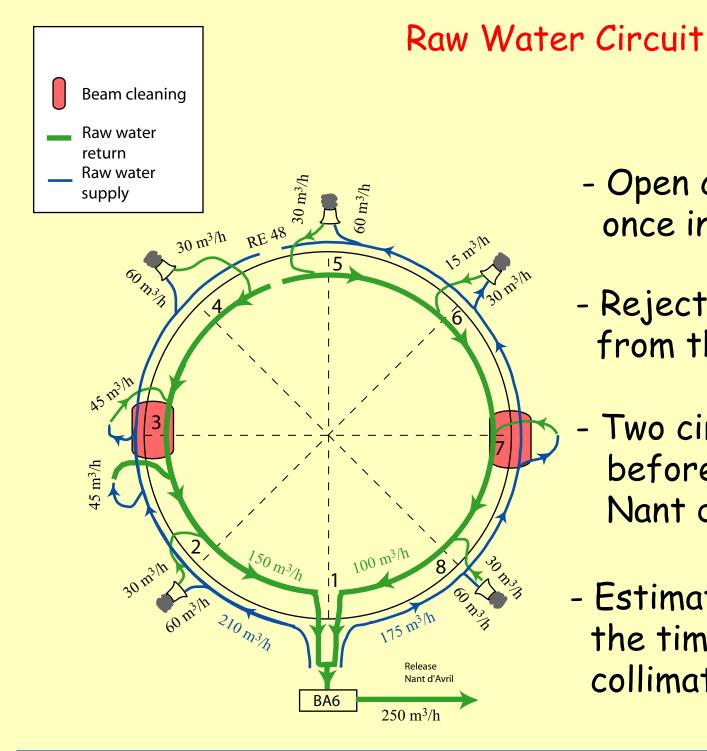
- ³H : Supply + Return pipes 0.56 nuclei/p
- ⁷Be : Supply + Return pipes 0.079 nuclei/p

Nominal Losses and one year of operationTritium activity* $^{7}Be activity*$ $A_i = 37 \pm 1 MBq$ $A_i = 174 \pm 9 MBq$


 $a_i = 0.62 \pm 0.01 \text{ kBq/}\ell$ $a_i = 2.9 \pm 0.1 \text{ kBq/}\ell$

Ultimate Losses and one year of operationTritium activity*7Be activity* $A_i = 59 \pm 2 \text{ MBq}$ $A_i = 275 \pm 13 \text{ MBq}$ $a_i = 0.98 \pm 0.02 \text{ kBq}/\ell$ $a_i = 4.6 \pm 0.2 \text{ kBq}/\ell$

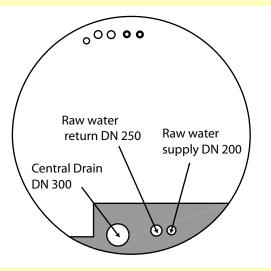
⁷Be : $4 \text{ kBq}/\ell$


circuit volume is 10+50 m³

Chilled and mixed water Engineering Specifications

 ^{3}H

 $6 \text{ kBq}/\ell$


Open circuit, the water flows once in the collimator area

- Reject pipe collects water from the cooling towers
- Two circuits join in Point 1 before the release in the Nant d'Avril
- Estimate of the flow rate gives the time of irradiation in the collimator area

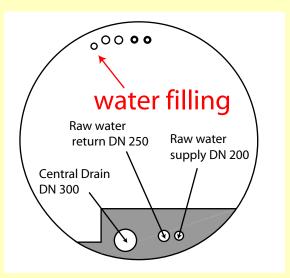
Raw Water Circuit Activity

- Pipes located in the concrete (shielding)

Production of radioactive nuclei ³H supply pipe : 0.5 nuclei/proton ³H Return pipe : 0.2 nuclei/proton ⁷Be supply pipe : 0.08 nuclei/proton ⁷Be return pipe : 0.03 nuclei/proton

Rejected in the Nant d'Avril in 180 days 98 MBq of ³H 1290 MBq of ⁷Be Specific activity in several locations

	³ H (kBq/ℓ)	⁷ Be (kBq/ℓ)
Supply Pipe		
Before IR7 Point 7 End of IR7	3.96x10 ⁻⁶ 1.06x10 ⁻⁴ 1.64x10 ⁻⁴	5.70x10 ⁻⁵ 1.40x10 ⁻³ 2.16x10 ⁻³
Reject Pipe		
Before IR7 Point 7 (1) Point 7 (2) End of IR7 Nant d'Avril	1.71x10 ⁻⁴ 2.87x10 ⁻⁴ 2.22x10 ⁻⁴ 3.38x10 ⁻⁴ 1.09x10 ⁻⁴	2.26x10 ⁻³ 3.78x10 ⁻³ 3.93x10 ⁻³ 4.46x10 ⁻³ 1.44x10 ⁻³


- Contribution from beam-gas interactions before the collimators section
- Junction with the second circuit in Point 1 before release

 ^{3}H : 6 kBq/ ℓ

⁷Be : $4 \text{ kBq}/\ell$

Water Filling Pipe

- This pipe is used to supply the demineralised water circuits in each octant with demineralised water produced in Point 1
- It is hard to evaluate the flow rate in the pipe and thus the time spend by water in the collimator area. However the total activity produced can be estimated

Nominal Losses and one year of operation

Tritium activity	⁷ Be activity
A _i = 17 <u>+</u> 1 MBq	A _i = 76 <u>+</u> 5 MBq

Ultimate Losses and one year of operationTritium activity 7 Be activity $A_i = 31 \pm 1 \text{ MBq}$ $A_i = 143 \pm 9 \text{ MBq}$

³H : 0.3 nuclei produced per lost protons in the collimators ⁷Be : 0.04 nuclei produced per lost protons in the collimators

Synthesis of tritium concentration and releases

The specific and total activity calculated correspond to losses for the ultimate intensity of the accelerator

Release Point	Specific activity kBq/l	Estimated volume	Total activity (MBq)	Comments
Nant d'Avril (BA6)	1.09x10 ⁻⁴	$\approx 250 \text{ m}^3/\text{h}$	98	Raw water circuit including the two half rings with contribution from collimators in point 3 and 7. The average flow in BA6 is supposed to be equal to 250m ³ /h
Nant Marquet (Pt7)	7	$\approx 50 \text{ m}^3$	338	The activation results from 180 days of operation of the accelerator, it is then assumed that the water is replaced. The water must be mixed with other drainage water before it can be pumped-up to the surface
Nant Marquet (Pt7)	1	$\approx 60 \text{ m}^3$	59	This is the activity reached after 180 days of operation for the water of this circuits which also flows in surface buildings
Nant de cobe (Pt8)	7	$\approx 50 \text{ m}^3$	338	The activation results from 180 days of operation of the accelerator, it is then assumed that the water is replaced. The water must be mixed with other drainage water before it can be pumped-up to the surface

Perspectives

- Updated layout : flexible, long primary collimators, absorbers (water cooled ?)

Conclusions

- The activity in the demineralised water circuit may reach values close to legal limits (if the principles of the Swiss legislation is accepted by French authorities)

- There are no big streams in Point 7 and in Point 8 to receive those large amount of water hard to estimate the effect

of this release

- The tritium activity in the water is several hundred times higher than the activity of rain water (few Bq/I)