

May 8th, 2006

FLUKA Simulations of TCDQ halo loads

L. Sarchiapone, A. Ferrari, V. Vlachoudis

- Energy deposition on LHC dumping system elements,
 beam 2, Low β
- Peak energy and quench limits in quadrupole (MQY) and corrector dipole (MCBY)
- Magnetic field modulation in the MCBY

Input data, horizontal losses Data provided by Thomas Weiler

Input data, vertical losses Data provided by Thomas Weiler

 \square 20,000 p⁺ followed in 4 runs

Magnetic field **on**, in MCBY and MQY (sensitivity to the MCBY mag. field has been studied)

□ Cartesian binning chosen for each element, with $\Delta x = \Delta y =$

1mm and Δz = 2cm.

□ Results in GeV/cm³/p converted to W/cm³

□ 5.11 10⁶ particles absorbed in SixTrack simulations,

Beam life time of **0.2 h** at nominal LHC intensity assumed

□ Results scaled to **1.65 10⁸ p/s** lost on TCDQ/TCS

Horizontal

	TCDQA	TCDQB	TCSL	TCSR	MASK	COIL MCBY	IRON MCBY	COIL MQY	STEEL MQY
J/cm ³ /p	3.7 10-10	2.6 10-10	1.3 10-10	1.2 10-10	7.9 10-11	1.4 10-11	2.7 10-12	1.9 10-11	4.9 10 ⁻¹²
W/cm ³	0.0604	0.0422	0.0214	0.0193	0.0131	0.0023	4.45 10-4	0.0031	8.1 10-4

Norm. per 1.65 10⁸ p/s

Vertical

	TCDQA	TCDQB	TCSL	TCSR	MASK	COIL MCBY	IRON MCBY	COIL MQY	STEEL MQY
J/cm ³ /p	3.7 10-10	2.2 10-10	1.2 10-10	8.7 10-11	7.0 10-11	1.1 10-11	2.3 10 ⁻¹²	1.6 10-11	4.7 10 ⁻¹²
W/cm ³	0.0326	0.0194	0.0106	0.0077	0.0062	9.7 10-4	2.03 10-5	0.0014	4.1 10-4

Norm. per 8.81 10⁷ p/s

Thermal load on MQY coil [mW/cm³]

Load condition	Beam 1	Beam 2
No beam cleaning	15	???
Nominal cleaning	0.03	3.1

- At the assumed loss rate of 1.65 10⁸ p/s on TCDQ/TCSG the maximum power deposition on TCDQ (diluter) and TCSG (secondary collimator) is 60 mW/cm³ and 22 mW/cm³ respectively.
- The power deposited on the quadrupole MQY and the sensitivity to the magnetic field in the corrector dipole MCBY have been studied with the following result:
 - The power deposited on MQY with the a MCBY magnetic field of ~2 T (100%) is 3.1 mW/cm³, < factor 2 under the quench limit (5 mW/cm³);
 - Reducing the field intensity to 10%, the safety factor rises up to 4.
- The energy deposition doesn't change using as input the horizontal or vertical loss maps (results presented for "horizontal simulations" are also available for vertical).