Energy deposition studies in IR7 and absorbers

Collimation Meeting 29-10-2004

A. Ferrari, M. Magistris, M. Santana, V. Vlachoudis

Prototypes

Collimators, dipoles, quadrupoles, sextupoles, multipoles

Reflection: MQW Vertical and Horizontal

Rotation and run-time corrections: Primary and secondary collimators

- Rotation around the beam direction and the vertical axis
- Jaw material (carbon, metal)
- Collimation gap and misalignment (runtime)

Absorber geometry

Like secondary collimator, with Cu jaws and 10 sigma half width

Special techniques and physics options

- Biasing techniques ("Russian roulette", splitting, leading particle biasing and region importance)
- Energy cutoff by region
- Electromagnetic cascade
- Particles to be tracked

The CPU time to track one primary proton was reduced from 120 s to 1.6 s

Validation

- Trajectory of primary protons along the tunnel (magnetic field fine-tuning)
- 4 __horizontal and vertical beam (consistency half-gaps / beta functions)
- H, V and S losses simulated separately and together (source consistency)
- Flange design (C. Rathjen)

Validation

Magnets (Tortschanoff, R^{¹/₂}
 Wolf,R. Ostojic)

- Beta function (S. Redaelli
- Losses in TCP (R. Assmann)
- Tunnel (R. Valbuena)

Pos=9.5,0.0,22496. Ext=7 7

Analysis

Energy deposition (Cartesian, cylindrical binning and by region) Star density

- MCNPX (Geometry plots, 2D)
- Povray (Geometry plots, 3D)
- EnLattice (Average and statistical error)
- Flukaplot (Plots of energy distribution)
- Results.sh (To create a table with results from all scenarios)

Analysis can be performed by region, eg. collimator TCSG.A6.L7

Energy distribution with Cartesian

Cross-sectional front view of a warm quadrupole

Total energy deposition in MQWAE5L:

38.5 kW

Beam loss scenario

Assumed loss scenario (0.2 h) for all calculations :

- The number of primaries lost in LHC is 4 x 10¹¹ p/s.
- 90 % of losses in LHC take place in the TCP of IR7 section

Four loss scenarios have been studied:

- losses concentrated in the horizontal TCP (horizontal losses)
- losses concentrated in the vertical TCP (vertical losses)
- losses concentrated in the skew TCP (vertical losses)
- losses distributed over the three TCP (full losses)

Optimization scheme

Simulations are run for:

- 4 loss scenarios (Hori, Vert, Skew and full)
- 4 possible locations (A4, A6, C6 and E6)
- 2 absorber orientation (Vert and Hori)

32 possible 1-TCL configurations (80 possible 2-TCL configurations)

• CPU time: 12 hours per set (5000 protons per simulation, 5 simulation per set)

Systematic check-up

- Well defined loss scenario and TCL
- Consistent position and half-gap
- CPU time per run
- Jaw orientation and beta function

Automated table filling with energy deposition for a single absorber. 250 simulations, 25 CPU days

		W	mW/c	: W	W	err70
Absorb	Ns	$\operatorname{COIL}_{tot}$	$\operatorname{COIL}_{det}$	$_{n}$ MQ $_{tot}$	TCL	TCLC6
\mathbf{vert}			ms			err%
NoTCL	20	64.03	330.215	201.94	0	TCLC6
$\mathrm{err}\%$		20.00	28.0	11.39	0	err%
TCLA4v	15	48.62	626.244	169.97	2515.34	TCLE6
$\mathrm{err}\%$		21.00	37.6	9.95	3.91	err%
TCLA6h	10	27.23	277.176	133.20	860.00	TCLE6
$\mathrm{err}\%$		41.00	85.2	23.59	10.10	err%
TCLA6v	20	4.71	74.940	10.17	1981.37	skew
$\mathrm{err}\%$		52.00	79.0	28.64	5.14	TCLA6
TCLC6h	10	5.39	48.349	12.62	854.03	$\mathrm{err}\%$
$\mathrm{err}\%$		46.00	95.6	32.17	12.64	TCLC6
TCLC6v	20	3.05	45.800	7.20	1137.42	$\mathrm{err}\%$
$\mathrm{err}\%$		39.00	49.9	21.18	9.71	TCLE6
TCLE6h	6	17.50	48.317	65.80	1068.14	$\mathrm{err}\%$
$\mathrm{err}\%$		47.00	54.1	28.08	20.07	full
TCLE6v	15	3.89	31.226	11.56	1017.02	Notci
$\mathrm{err}\%$		33.00	37.7	15.26	17.45	err%

TTT

hori		W	mW/c	W	W
NoTCL	20	142.10	848.125	396.48	0
$\mathrm{err}\%$		13.00	m_{2}	7.25	0
TCLA4h	10	97.29	1196.577	314.77	3273.48
$\mathrm{err}\%$		23.00	57.1	11.59	5.43
TCLA6h	15	95.94	547.627	285.69	2116.38
$\mathrm{err}\%$		23.00	45.8	14.11	4.09
TCLA6v	10	62.18	700.980	147.27	3333.66
$\mathrm{err}\%$		39.00	47.5	23.28	4.36
TCLC6h	20	9.69	166.982	21.14	1679.45
$\mathrm{err}\%$		49.00	73.2	26.68	4.73
TCLC6v	10	31.23	295.989	60.54	1793.23
$\mathrm{err}\%$		54.00	60.8	32.70	11.11
TCLE6h	10	27.27	709.016	75.91	928.53
$\mathrm{err}\%$		32.00	43.7	25.54	12.63
TCLE6v	10	7.17	82.933	30.66	996.87
$\mathrm{err}\%$		20.00	34.8	27.66	11.31
$_{ m skew}$					
TCLA6h	6	38.22	1004.774	173.22	390.93
$\mathrm{err}\%$		51.00	96.5	37.69	9.35
TCLC6h	5	1.26	16.248	3.02	563.61
$\mathrm{err}\%$		49.00	58.0	26.01	21.28
TCLE6h	4	1.17	64.416	4.08	392.67
$\mathrm{err}\%$		48.00	86.0	32.04	41.14
full					
NoTCL	10	85.73	539.627	244.48	0
$\mathrm{err}\%$		40.00	60.5	18.23	0

Max. heat density on MQTLHA6 coil

MQTLHA6

Two absorbers

170 Simulations, 18 CPU days

		W	mW/cm3	W	W	W
Absorb	Ns	$\operatorname{COIL}_{t,t}$	t COIL _{den}	\mathbf{MQ}_{tot}	$1^{st}\mathrm{TCL}$	$2^{nd}\mathrm{TCL}$
vert						
TCLA6vC6h	10	0.03	0.645	0.05	1979.65	210.74
$\mathrm{err}\%$		71.00	99.0	42.70	10.33	19.29
TCLA6vC6v	15	5.34	27.907	12.37	2197.87	193.40
$\mathrm{err}\%$		66.00	88.7	34.14	6.48	15.32
hori						
TCLA6vC6h	15	5.30	87.149	18.95	3218.39	622.79
$\mathrm{err}\%$		97.00	99.0	46.45	5.59	9.76
TCLC6hE6v	86	0.69	3.975	3.15	2078.00	321.68
$\mathrm{err}\%$		29.00	75.2	14.11	3.40	9.30
skew						
full						
TCLA6vC6h	28	0.16	0.744	0.72	2085.63	325.12
$\mathrm{err}\%$		60.00	99.0	29.67	4.82	9.37
TCLC6hE6v	20	0.94	7.369	4.05	1225.19	278.35
$\mathrm{err}\%$		50.00	95.0	26.59	9.52	28.33

Three absorbers

600 Simulations, 60 CPU days

		W	mW/cm	W	W	W	W
Absorb	Ns	$\operatorname{COIL}_{tot}$	COJL_{den}	MQ_{tot}	$1^{st}\mathrm{TCL}$	$2^{nd}\mathrm{TCL}$	$3^{rd}\mathrm{TCL}$
vert							
hori							
TCLA6vC6hE6	v256	0.76	2.256	2.77	2368.91	428.60	79.29
$\operatorname{err}\%$		31.00	48.7	15.89	2.26	4.80	13.60
\mathbf{skew}							
full							
TCLA6vC6hE6	v342	0.42	1.331	1.46	2167.72	371.46	58.65
$\mathrm{err}\%$		27.00	59.2	13.83	1.90	4.51	14.61

Maximum energy deposition

Highest value of energy deposition in 1 cm thick slices

The dashed line corresponds to 5 mW/cmc

Maximum energy deposition

Highest value of energy deposition in 1 cm thick slices

The dashed line corresponds to 5 mW/cmc

Conclusions

- Four possible locations for absorbers (A4, A6, C6, E6)
- Absorbers in C6 and E6 are the most effective ones
- The worst scenario consists in all losses concentrated in the horizontal TCP
- Results suggest that three absorbers per beam should be enough to avoid quenching in the first MQTL
- Further investigation may suggest more effective combinations of absorbers
- We will also investigate energy deposition in cold dipoles