Direct proton losses and beam-gas interaction in IR7

the FLUKA team

4th February '08

Outline

• Direct proton losses:

- Energy deposition in the cold section: two different approaches
- Direct proton losses in IR7
- Normalization of FLUKA results
- Results of the simulations
- Conclusions

Beam-gas interaction:

- Introduction
- Normalization of FLUKA results
- Results of the simulations
- Conclusions

Direct proton losses Introduction

To compute energy deposition in IR7 cold elements due to the beam halo two different approaches are possible.

Method 1

 Loss maps in the collimators are computed with SIXTRACK, including both inelastic and single diffractive events
 FLUKA imports the loss map and samples:

- The interaction location (among the events in the loss map)
- The interaction type (inelastic and single diffractive)

3) FLUKA transports the interaction products along IR7, and if it's the case, up to the DS.

Why are single diffractive events so important?

Because most of energy deposited in the DS is due to single diffractive events in the collimators. Showers generated by inelastic interactions in the primary and secondary collimators don't reach the DS.

Method 2

 Direct proton losses maps are computed with SIXTRACK (location and direction of particles leaving the aperture)
 FLUKA imports the loss map and samples the proton impacting position (among the events in the loss map)
 FLUKA transports the proton in the material.

Quick comparison:

Method 1:

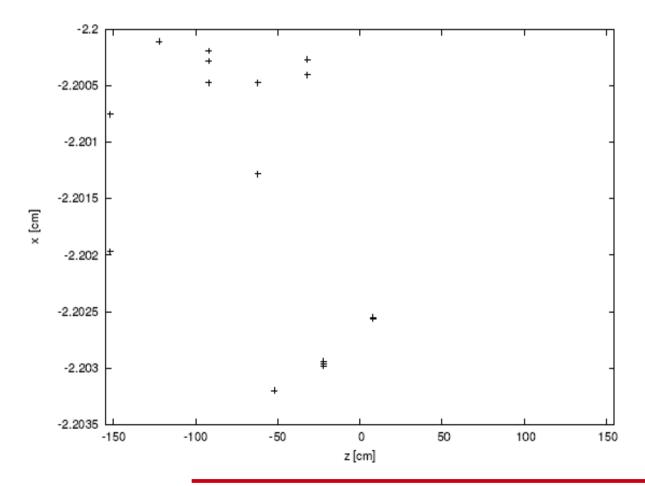
- Single diffractive events in the collimators handled by FLUKA
- Transport through IR7 handled by FLUKA

Method 2:

- Single diffractive events in the collimators handled by SIXTRACK
- Transport through IR7 handled by SIXTRACK

Direct proton losses Direct proton losses in IR7

Case lowbeta, horizontal halo. Tracked particles: 5.76E6


Element	#	Length[m]	#/m	Element	#	Length[m]	#/m
MQWA.C5L7.B1	1	3.108	0.32	DRIFT 94	6	0.296	20.2
DRIFT 851	2	0.692	2.89	DRIFT 21	2	0.192	10.4
MQWB.5L7.B1	2	3.108	0.64	DRIFT 823	28	0.844	33.1
DRIFT 851	3	0.692	4.33	MQ.9R7.B1	29	3.1	9.35
MQWA.B5L7.B1	13	3.108	4.18	MB.B10R7.B1	1	14.3	0.06
DRIFT 851	1	0.692	1.44	DRIFT 819	2	0.845	2.36
MQWA.A5L7.B1	21	3.108	6.75	MQ.10R7.B1	19	3.1	6.12
MQWA.D4R7.B1	4	3.108	1.28	DRIFT 120	5	0.169	29.5
DRIFT 851	1	0.692	1.44	MQTLI.10R7.B1	25	1.3	19.2
MB.B8R7.B1	5	14.3	0.34	DRIFT 820	3	0.19	15.7
DRIFT 85	2	0.297	6.73	MCBCV.10R7.B1	16	0.9	17.7
DRIFT 827	8	0.843	9.48	DRIFT 821	11	0.562	19.5
MQ.8R7.B1	29	3.1	9.35	DRIFT 90	5	0.203	24.6
DRIFT 120	1	0.169	5.91	DRIFT 110	8	0.192	41.6
MQTLI.8R7.B1	18	1.3	13.8	DRIFT 80	8	0.339	23.5
DRIFT 820	4	0.19	21.0	MB.A11R7.B1	254	14.3	17.7
MCBCV.8R7.B1	10	0.9	11.1	DRIFT 81	2	0.219	9.12
DRIFT 828	8	0.564	14.1	MCS.A11R7.B1	3	0.11	27.2
DRIFT 90	3	0.203	14.7	DRIFT 111	6	0.295	20.3
DRIFT 91	6	0.190	31.5	DRIFT 83	6	0.205	29.2
DRIFT 80	5	0.339	14.7	DRIFT 1580	9	0.532	16.9
MB.A9R7.B1	279	14.3	19.5	MB.B11R7.B1	208	14.3	14.5
DRIFT 1284	1	0.219	4.56	DRIFT 81	2	0.219	9.12
MCS.A9R7.B1	2	0.11	18.1	DRIFT 1296	6	0.294	20.4
DRIFT 1575	7	0.297	23.6	DRIFT 1581	4	0.202	19.7
DRIFT 83	5	0.205	24.3	DRIFT 1500	185	13.517	13.6
DRIFT 1576	14	0.530	26.4	DRIFT 941	16	0.846	18.9
MB.B9R7.B1	242	14.3	16.9	MQ.11R7.B1	20	3.1	6.45
DRIFT 81	4	0.219	18.2	MQ.13R7.B1	1	3.1	0.32
MCS.B9R7.B1	4	0.11	36.3				

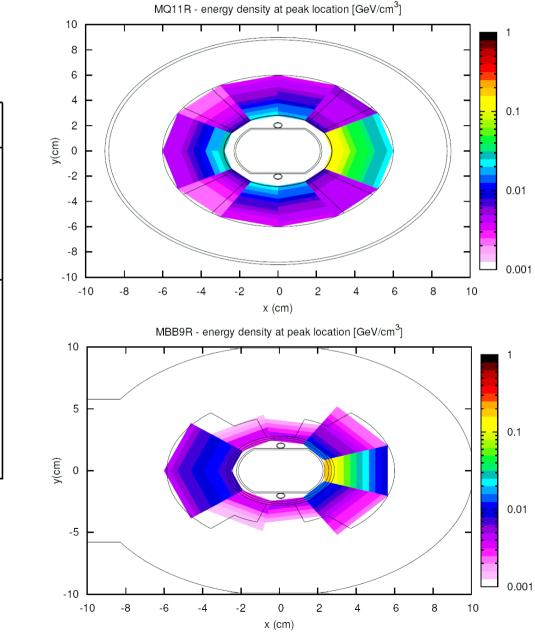
Total number of events: 1595 Loss map provided by C. Bracco

Direct proton losses Direct proton losses in IR7

Lack of statistics from the SIXTRACK side. Take with care the errors specified in the results that follow.

Example: MQ.11R7 has only 20 events

4th February '08 Beam-gas interaction and direct proton losses in IR7 – The FLUKA Team


Direct proton losses Normalization

The normalization factor to convert the FLUKA results, expressed per source particle, in power density is the following:

 $N = L * N_{DPL} / N_{TOT}$ Where:

 $N_{_{DPL}}$ is the number of direct proton losses in IR7 (1525) $N_{_{TOT}}$ is the total number of particles simulated with SIXTRACK (5.76E6) L is the loss rate: 4.3E+11 s⁻¹ for nominal intensity and 0.2 h beam lifetime Direct proton losses Results (lowbeta, horizontal halo)

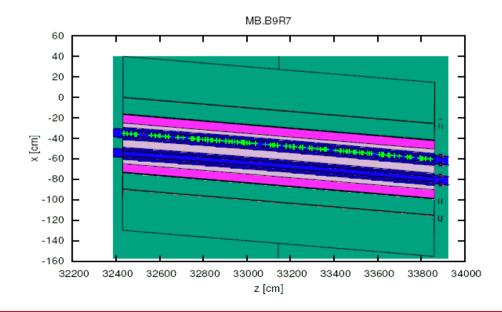
Element	Peak energy	Peak power	Error
	$[J/cm^3/pr]$	$[mW/cm^3]$	[%]
MQ8R	0.044	0.84	± 2.9
MQ9R	0.063	1.20	± 2.3
MQ10R	0.041	0.78	± 2.8
MQ11R	0.139	2.64	± 4.6
MQ12R	0.000	0.00	± 71.3
MQ13R	0.003	0.06	± 12.5
MBB8R	0.004	0.08	± 10.3
MBA9R	0.101	1.92	± 2.3
MBB9R	0.160	3.05	± 2.3
MBA10R	0.004	0.08	± 4.2
MBB10R	0.005	0.10	± 11.6
MBA11R	0.097	1.85	± 2.4
MBB11R	0.078	1.49	± 2.3
MBA12R	0.009	0.17	± 3.2
MBB12R	0.002	0.04	± 5.9

Direct proton losses Results (lowbeta, horizontal halo)

	Direct proto	n losses	Interaction in collimators		
Element	Peak power	Error	Peak power	Error	
	$[mW/cm^3]$	[%]	$[mW/cm^3]$	[%]	
MQ8R	0.84	± 2.9	1.0	± 64.4	
MQ9R	1.20	± 2.3	1.9	± 22.6	
MQ10R	0.78	± 2.8	0.5	± 66.7	
MQ11R	2.64	± 4.6	5.0	± 32.3	
MBB8R	0.08	± 10.3	0.2	± 72.2	
MBA9R	1.92	± 2.3	0.6	± 23.8	
MBB9R	3.05	± 2.3	1.0	± 12.2	
MBA10R	0.08	± 4.2	0.4	± 24.8	
MBB10R	0.10	± 11.6	0.03	± 99.0	
MBA11R	1.85	± 2.4	0.9	± 22.6	
MBB11R	1.49	± 2.3	1.0	± 15.6	
MBA12R	0.17	± 3.2		± 29.4	
MBB12R	0.04	± 5.9		± 77.7	

M. Santana, Status of energy deposition studies at IR7, Collimation working group, 17/7/2006 - The expected values of power peaks obtained from the two different methods are of the same order of magnitude. They differ by a factor of ~ 3 .

As already pointed out an uncertainity of a factor of 3 for peak calculation is reasonable.


- The data from the simulation taking into account the losses in collimators are old; a new run should be performed (new optics, passive absorbers final layout, etc.): loss maps needed.

Beam-gas interaction Introduction

- Aim: study of the energy deposited in the cold elements of IR7 due to the interaction of the LHC beam with the residual gas.
- So far there is not a detailed study of residual gas density and composition in IR7
- FLUKA simulation:

1) The residual gas is assumed to be hydrogen

2) The beam-gas collision is simulated with FLUKA by sampling a point along the beam axis and forcing the interaction

- FLUKA simulation (continued):
 - 3) The energy peak and the total energy deposited per meter (provided by FLUKA) in each cold element has been compared, respectively, with the limits of 4 mW/cm³ and 30 mW/m (*).

A maximum interactions rate is obtained, leading to a maximum tolerable gas density *(see next slide)*

4) The maximum gas density has been cross checked with the results of vacuum studies for other critical points of LHC.

(*) Limit of energy deposited per meter per beam due to beam gas interaction. LHC Design Report, Chapter 12

Beam-gas interaction Normalization

If the interaction is sampled along a distance L (along which the H_2 density is supposed to be constant)

and the **energy density peak** in a cold element is E_{peak} ,

then the maximum interaction rate in L is equal to: N [interaction/s] = Q [mW/cm³] / E_{peak} [mJ/cm³/pr] (being Q the quench limit)

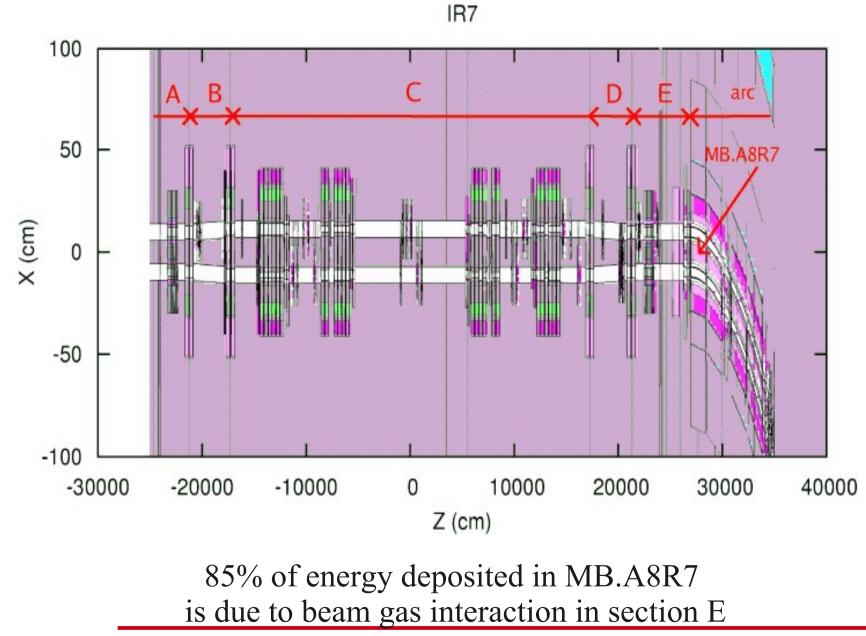
From the maximum interaction rate the **limit on gas density** can be determined:

 $\rho(H_2, max) [molecules/m^3] = N / (I * \sigma * L)$

Where:

I is the beam current (3.64E+10 p/s), σ the p-H₂ cross section (76 mb)

The LHC beam lifetime for nuclear interaction with the residual gas is 100h: this value is consistent with an average power dissipation per beam of 32 mW/m and with H_2 -equivalent equivalent density of 1E+15 molecules/m³

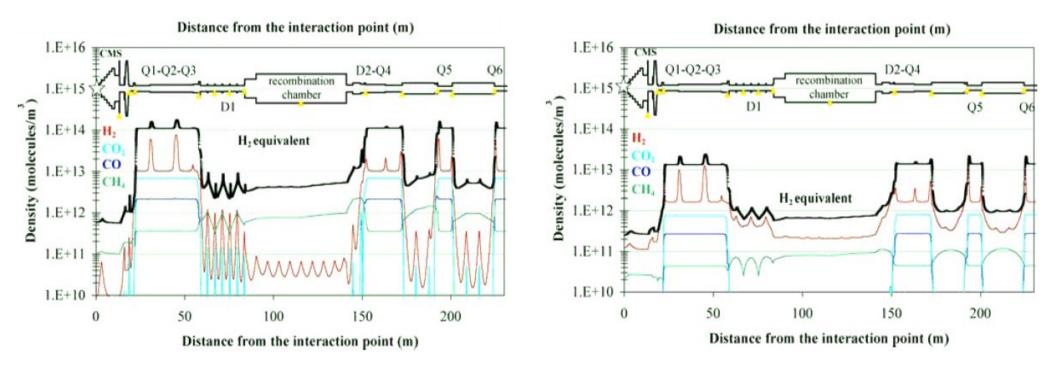

Beam-gas interaction Results

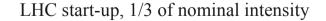
Element	Energy peak	ρ_{max,H_2}
name:	$[{ m GeV/cm^3/pr}]$	$[molecules/m^3]$
MB.A8R7	$0.046 \pm 1.7\%$	$2.8 \cdot 10^{16}$
MB.B8R7	$0.021 \pm 2.6\%$	$6.1 \cdot 10^{16}$
MQ.10R7	$0.020\pm5.8\%$	$6.4 \cdot 10^{16}$
MQ.8R7	$0.019\pm6.9\%$	$6.7 \cdot 10^{16}$
MQ.9R7	$0.018\pm8.2\%$	$7.1 \cdot 10^{16}$
MB.B9R7	$0.016\pm3.3\%$	$8.0 \cdot 10^{16}$
MB.B10R7	$0.015 \pm 3.1\%$	$8.5 \cdot 10^{16}$
MB.B11R7	$0.015\pm3.5\%$	$8.5 \cdot 10^{16}$
MB.A10R7	$0.014\pm3.4\%$	$9.1 \cdot 10^{16}$
MB.A9R7	$0.012\pm2.9\%$	$1.1 \cdot 10^{17}$
MB.A11R7	$0.012\pm2.9\%$	$1.1 \cdot 10^{17}$
MQ.7R7	$0.008\pm5.0\%$	$1.6 \cdot 10^{17}$
MQ.11R7	$0.005 \pm 20.5\%$	$2.6 \cdot 10^{17}$

Beam-gas interaction Results

Element	Energy	Length	Energy/meter	ρ_{max,H_2}
name:	$[{ m GeV/pr}]$	[m]	[GeV/pr/m]	$[molecules/m^3]$
MB.A8R7	$307.72 \pm 0.74\%$	14.30	21.52	$4.45 \cdot 10^{14}$
MQTLH.F6L7	$21.20 \pm 1.09\%$	1.30	16.31	$5.87 \cdot 10^{14}$
MQ.11R7	$39.28\ \pm 1.50\%$	3.10	12.67	$7.56 \cdot 10^{14}$
MB.B8R7	$157.15\ \pm 0.82\%$	14.30	10.99	$8.71 \cdot 10^{14}$
MQ.10R7	$29.17\ \pm 1.74\%$	3.10	9.41	$1.02\cdot10^{15}$
MQ.8R7	$29.17\ \pm 1.60\%$	3.10	9.41	$1.02\cdot10^{15}$
MB.B11R7	$129.54\ \pm 0.89\%$	14.30	9.06	$1.06\cdot 10^{15}$
MQ.9R7	$28.01\ \pm 1.72\%$	3.10	9.04	$1.06\cdot10^{15}$
MB.A9R7	$127.07\ \pm 0.90\%$	14.30	8.89	$1.08\cdot10^{15}$
MB.B9R7	$126.41\ \pm 0.89\%$	14.30	8.84	$1.08\cdot10^{15}$
MB.A11R7	$125.84\ \pm 0.87\%$	14.30	8.80	$1.09\cdot10^{15}$
MB.AB10R7	$123.96\ \pm 0.92\%$	14.30	8.67	$1.10\cdot10^{15}$
MB.A10R7	$121.59\ \pm 0.90\%$	14.30	8.50	$1.13 \cdot 10^{15}$
MB.A12R7	$119.31\ \pm 0.91\%$	14.30	8.34	$1.15 \cdot 10^{15}$
MCS.A8R7	$1.04\ \pm 1.36\%$	0.15	7.04	$1.36\cdot10^{15}$
MQ.7R7	$21.47 \pm 1.23\%$	3.10	6.92	$1.38 \cdot 10^{15}$

Beam-gas interaction Results

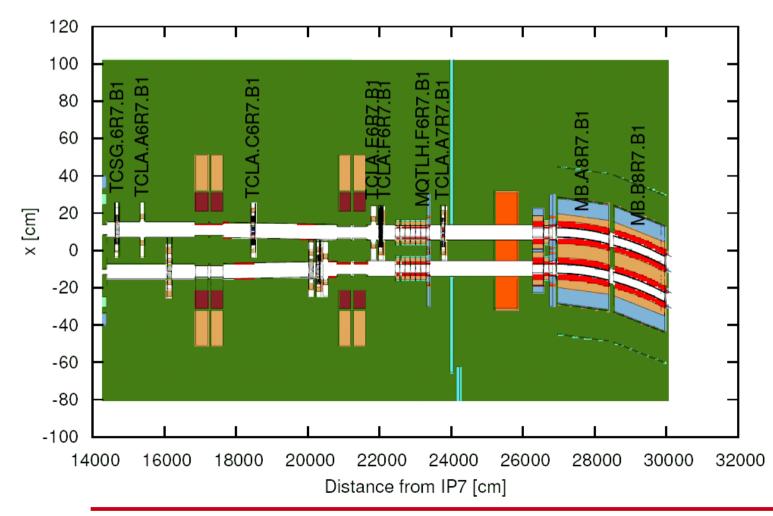

According to the simulations:


- When considering the **quench limit** (4 mW/cm³) the gas density limit in IR7 is **2.8E+16 molecules/m³**

- When considering the **power deposition per meter** (30 mW/m) the gas density limit in IR7 is **4.45E+14 molecules/m³**.

Beam-gas interaction Conclusions

Gas density and composition expected in IR5


LHC after conditioning, nominal intensity

From:

A.Rossi, Residual gas estimations in the LHC insertion regions IR1 and IR5 and the experimental regions of ATLAS and CMS, LHC-Project-Report-783

Beam-gas interaction Conclusions

It could be useful to have some informations about the expected gas density and composition upstream the MB.A8R7, where some active absorbers are located.

4th February '08 Beam-gas interaction and direct proton losses in IR7 – The FLUKA Team