Status of energy deposition studies at IR7

Collimation Meeting 14-02-2005

A. Ferrari, M. Magistris, M. Santana, V. Vlachoudis

Implementation of vertical and horizontal absorbers.

Implementation of vertical and horizontal absorbers.

B7 is discarded, NO SPACE

A7 was moved on 31^{st} January to 20243.94 m (24978.1 cm from IP7) --> A7'

A7'new was moved on 7th February to 20232.1 m! (23794.3 cm from IP7) --> A7''
Simulations are implemented but NOT yet running with the last position.

IR7 curved region.

- Tunnel, pipes, etc have been chopped, rotated and merged.
- Prototypes are allocated with the according rotation.
- The dipole is made of four straight sections, to accommodate the trajectory.

Energy deposition for considered configurations

N_{ab}	s % Bea	m A6 v	$C6_h$	$\mathbf{E6}_v$	$\mathbf{B7}_v$	$A7_h$	MQTL	MB	MQ
0	1.5	2	<u>=</u>	<u></u>	20	_	330	?	?
2	55	-	1190	208	-	-	1.6	?	?
3	55	2360	413	75	20	_	1.8	9	2.5
3	Y	-	1190	208	-	?	1.6	?	?
4	200	2360	413	75	-	50	1.8	2.5	2
4	Y	-	1190	208	?	?	1.6	?	?
5	200	2360	413	75	9	44	1.8	1.8	2.1

Table 1: Results of energy deposition in sensitive areas of IR7 for different absorbers. Units are W and $\frac{mW}{cm^3}$ for $COIL_{den}$, MB and MQ.

Energy deposition for last simulated configurations

Nabs	%~Bea	m A 6_v	C6 _h	E6 _v	$A7_h$	MQTL	MB	MQ
0	1.5	18	32	2		330	?	?
2	55	34	1190	208	4:	0.69	7	7
3	55	2360	413	75	2	0.37	9	2.5
3	Y	100	1190	208	7	0.69	7	?
4	200	2360	413	75	20	0.37	1.4	1.3

Table 1: Results of energy deposition in sensitive areas of IR7 for different absorbers. Units are W and $\frac{mW}{cm^3}$ for COIL $_{den}$, MB and MQ.

Energy deposition along the curved section.

3 abs. in straight section, No abs. for curved section

Energy deposition along the curved section.

3 abs. in straight section, 1 abs. for curved section.

Radiation on the MBA8

3 abs. in straight section, 1 abs. for curved section

Heat in the finger collar of the TCSGA6L1

Heat in the MBWB6L, 3.6*E11 p/s in IR7

(*) All energy concentrated in one insulator