Status of energy deposition studies at IR7

M. Santana, M. Magistris, M. Brugger, A. Ferrari, V. Vlachoudis

Outline

- Update on the simulations of the warm section of IR7
 - Dose in MBW's and MQW for horizontal and vertical beam losses at 7000 GeV
 - Heat density in the PA for several scenarios.
- Update on the simulations of the cold arc of IR7
 - Scenarios: Injection/top energy, all TCS off/nominal, vertical/horizontal loss...
 - Heat density in the MB's and MQ's

Energy balance

- Distribution of heat losses
- Particles escaping the system
- Remaining particles in the beam
- Ongoing/starting tasks
 - Phase space individual events for BLM's
 - Heat in support of MBW's

Simulations of the warm section of IR7 New scenarios: injection, TCS off, vertical losses

Studied variables: Beam energy, Loss scenario, TCS.

Surveyed magnitudes:

- Power density in PA.
- Dose in MBW and MQW coils.

Conditions:

- Beam 1: 7000 or 450 GeV, 2E16 p/y, 4E11 p/s losses
- 60 cm long TCP at 6 sigma.
- 100 cm long TCS at 7 sigma (nominal) or all off.
- W passive absorbers, 100 cm, 20 cm and 60 cm long.

Simulations: Sixtrack (C.Bracco)+FLUKA: 2x2x2 = 8 sets

IR7 Warm section simulations

MBW and MQW's: vertical vs. horizontal losses, update.

IR7 Warm section simulations

Power deposition in the PA for several scenarios 1/2

Conclusions:

- The absorbers need cooling. $3^{rd} > 1^{st} > 2^{nd}$

- The power densities/total powers for vertical and horizontal losses are very similar.

- The peak power densities at injection are from 40 to 200 times lower than those for top energy.

- In the failure mode the TCS is not showering, but the TCP produce more showers --> more irradiation of the absorbers.

IR7 Warm section simulations Power density in the PA for several scenarios 2/2

▶1 x 1 x 2 cm^3

Conclusions:

- The peak power density is at about 20 cm z-depth, in the mid plane, close to the beam pipe.

- Power maps are available for all three absorbers and for every scenario.

Effect of the TCLA, update 1/2

Conditions:

- Beam 1, horizontal losses
- 60 cm long TCS and TCP
- TCP and TCS all in
- Passive absorbers in

Simulations:

- Sixtrack: (Chiara Bracco)
- FLUKA: 3500000 lost protons

Effect of the TCLA, update 2/2

Results:

Conclusions:

- The 5 TCLA reduce the peak
 dose by a factor 370/1.4 >
 260
- In absence of the 5 TCLA, the first 5 magnets are taking the role of "absorbers"

- The shielded structure is 'only' close to quench at MQ11.

Effect of the tertiary halo, update 1/2

Studied variable:

- Contribution of tertiary halo to heat in cold arc

Conditions:

- Beam 1, horizontal losses
- 60 cm long TCP, 100 cm long TCS
- TCP, TCS and TCLA all in
- Passive absorbers in

Simulations:

- Sixtrack: (Chiara Bracco)
- FLUKA: 2 sets of simulations filtered to TCLA

Effect of the tertiary halo, update 2/2

Results:

Conclusions:

The contribution of the tertiary halo ranges from a factor 1 to 5, typically being ~2
The effect of the tertiary halo is critical in MQ11 (factor2), where the dose was already high.

Effects of the beam energy & loss scenario and TCS 1/3

Studied variables:

- Beam energy: injection (450) or top (7000 GeV)
- Beam loss scenario: horizontal / vertical
- Commissioning case: TCS off

Conditions:

- Beam 1, 450 or 7000 GeV, horizontal or vertical

beam losses.

- 60 cm long TCP at 6 sigma.
- 100 cm long TCP at 7 sigma (nominal) or all retracted.
- 5 TCLA at 10 sigma.
- 3 Passive absorbers in.
- Tertiary halo tracked.

Simulations:

- 2 (Energy) x 2 (scenario) x 2 (TCS) = 8 sets
- Sixtrack: (Chiara Bracco)
- FLUKA: ~ 500000-750000 particles per set.

New simulations of the cold arc Effects of the beam energy & loss scenario and TCS 2/3

Results:

E [GeV/b]		70	00			450					
	Hori	Vert	Hori	Vert		Hori	Vert	Hori	Vert		
TCL	0	N	0	ON			N	ON			
TCS	0	N	OFF			0	N	OFF			
MQ6	1.4	0.3	29.9	39.3		0.1	0.02	2.5	5.7		
MQ7	0.400	0.100	2.400	2.600		0.010	0.005	0.300	0.400		
MBA8R	0.200	0.500	1.700	2.600		0.090	0.002	0.100	0.050		
MBB8R	0.200	0.100	0.500	1.000		0.010	0.006	0.050	0.020		
MQ8	1.000	0.010	0.400	5.000		0.030	0.002	0.050	0.030		
MBA9R	0.600	0.350	0.800	1.500		0.020	0.007	0.030	0.030		
MBB9R	1.000	0.500	1.000	1.500		0.010	0.006	0.030	0.050		
MQ9	1.800	0.400	2.400	1.700		0.010	0.004	0.030	0.030		
MBA10R	0.400	0.030	0.300	0.500		0.010	0.000	0.020	0.030		
MBB10R	0.030	0.300	0.100	0.020		0.001	0.000	0.020	0.030		
MQ10	0.500	0.300	0.160	0.020		0.010	0.000	0.030	0.030		
MBA11R	0.900	0.200	1.300	1.800		0.005	0.000	0.020	0.000		
MBB11R	1.000	0.600	1.020	2.000		0.005	0.000	0.020	0.000		
MQ11	5.000	3.500	3.800	7.000		0.020	0.000	0.030	0.000		

Effects of the beam energy & loss scenario and TCS 3/3

Conclusions:

- In *nominal* conditions, the horizontal case is worse than the vertical one. The contrary is true for failure conditions.

- The *failure* scenario would quench MQ6 in all cases except horizontal-injection.

- The hottest magnet is MQ6 at injection and *also* MQ11 at top energy.

- The *highest* power densities in *nominal* conditions are between 1 and 5 mW/cm³

Notes:

- All results concerning injection energy are pending from a verification of FLUKA setup optics for that energy.

Energy balance 1/5

energy share (horizontal losses)

Basic Balance [kW] (0.2 h accident case):

- Input energy: 4.0E11 p/s x 7TeV/p = 449 (100%)

Scored energy: 327 (~73%) 327
 Energy escaping the system: 107 (~24%) 434
 Energy lost from nuclear models: 13 (~3 %) 447
 Energy converted to mass (recoils): 2 (0.4%) 449

Scored energy [kW] Table obtained for all (sub)objects

—	TUNCVC1	48	48	- MBWB6 12 :	209
-	TCLQA5	44	92	- TCSGA5 12 :	221
-	TUNBVC1	26	118	- MBWA6 11 :	232
-	TCLPA5	26	144	- MQWAE4 9	241
-	TCSGA6	23	167	– MQWAD5 7 :	248
_	ТСРВб	18	185	- MQWAC5 6	254
_	MQWAE5	12	197	- remain 73 3	327

Energy balance 2/5

escaping energy (horizontal losses)

Energy escaping the system [kW] (~24%) single number in
FLUKA output file.

- Tunnel concrete (tunnel)
- RR's, UJ's
- End of IR7 section --> ?

Energy at the end of IR7. Power deposited in the pipes:

Energy balance 3/5 escaping energy

Energy balance 4/5 escaping energy: energy in cold part

Energy balance 5/5

ongoing simulations

Flow measurement at different pipe cross sections at the end of the cold section

- Ideally Energy spectra for different particles.
- Problem: Statistics is too low
- Simulations now running!
- First results estimated on 20/07/06

Ongoing/starting tasks: BLM's

OLD SETUP for BLM simulations

- BLM blocks **after each collimator** (TCP/TCS), **below** the beam line plane
- BLM twiss file created
- Each BLM contains
- 2 detectors

- Each detector measures: <u>Fluence</u>: protons, neutrons, photons, muons (+/-), e-e+, pions <u>Energy deposition</u>
- Each measurement made for a different beam source (loss in collimators)

Ongoing / Starting tasks: BLM's

OLD RESULTS: Cross-talk Matrices (vertical detector)

Beam 1

Horizontal beam loss scenario

	L	1										R1	
	C	6	B6		A	5	B5	A5	D4	B4	A4	A4	B5
<i>tcp</i> C6	0.9	917	0.693	35	0.3	07 4.7	0.068 9.9	0.046 8.3	0.013 /2	0.007 17	0.00918	0.01918	0.065 40
<i>тср</i> Вб	0.0	09 14	0.30	75	0.3	86 5.6	0.054 8.2	0.053 12	0.01414	0.008 25	0.008 18	0.015 24	0.10663
<i>тср</i> Аб	0	5	1.4E	-5 96	0.3	08 3.9	0.223 7.3	0.159 4.5	0.053 7.6	0.044 16	0.03216	0.057 26	0.02943
<i>tcsg</i> B5	0	5	0	3	0	2.5	0.6537.3	0.6 3.7	0.344 5.8	0.2911	0.266 11	0.25411	0.101 38
<i>tcsg</i> A5	0	5	0	3	0	2.5	0.002 76	0.141 3.7	0.5764.9	0.65 5.6	0.68514	0.655 6.7	0.699 53

Vertical beam loss scenario

	L	1											R1	
D6	С	6	B	5	A	6	B5		A5	D4	B4	A4	A4	Ī
0.962 s	3 0.5	78 4.9	0.3	385	0.2	47 7.7	0.07	1 12	0.054 7.3	0.01721	0.037 71	0.015 23	0.026 28	TCPD6
0.038 /	0.4	194.9	0.4	99 <i>5.</i> 8	0.2	2 6	0.03	611	0.028 8.3	0.008 25	0.003 29	0.073 94	0.003 20	<i>TCP</i> C6
5.5E-4	390.0	03 10	0.1	63 5.8	0.2	92 7.7	0.06	6 16	0.041 7.3	0.013 16	0.004 18	0.007 22	0.020 41	<i>тср</i> Вб
0 5.8	0	2.9	0	3	0.2	41 6.8	0.20	4 7.6	0.144 4.5	0.053 14	0.039 41	0.052 52	0.03415	тсрАб
0 5.8	0	2.9	0	3	0	3.2	0.62	2 8.4	0.595 3.6	0.322 5.9	0.258 8.5	0.25212	0.23 8.3	TCSGB5
0 5.8	0	2.9	0	3	0	3.2	3.6E	-4 26	0.1394.5	0.588 8.3	0.6597	0.6 13	0.681 9.9	TCSGA5
2		2	3	9.5		59.	2	4	21		d			

- Cross talk ~ 1/d
 --> big cross talk between
 primaries
- Little backscattering
- Similar picture for horizontal and vertical beam
- Similar crosstalk for the 2 detectors
- Loss estimation $L = (M^{T}M)^{-1}M R$

Ongoing / Starting tasks: BLM's OLD RESULTS: Predicted response of every BLM

Detected particles
 Protons
 Neutrons
 Muons (+/-)
 Photons
 Electrons/positrons
 Pions (+/-)
 Loss scenarios (7TeV)
 Horizontal
 Vertical

- Full losses
- 2 detectors/BLM
- Injection Energy not analyzed

Ongoing / Starting tasks: BLM's

NEW SIMULATIONS: Phase space of individual particles

- Rearrangement of BLM detectors: DONE
- Customization of routines: DONE, under test
- Simulations: NOT running yet.
- WARNING: Results {x,y,z,K,vx,vy,vz,W,par} will contain the STATISTICAL weight W of the particle...

Can this be easily handled?

Does it make sense to do these (CPU-demanding) calculations?

Ongoing/Starting tasks.

- Simulation of energy deposition in supports of MBW's
 - Could you provide exact geometry?
- Flux at end of IR7
 - Setup tested and running
 - First results on 20/07/06
- BLM individual phase-space counts
- Upgrade of Commissioning simulations
 - Need revised beam loss maps
 - To be launched when CPU's are available