<u>Temperatures in Short Collimators with</u> <u>transient and continuous proton losses</u>

SHORT COLLIMATORS 1cm of Be or C

Steady state with cooling:

$$T(r_i) = \frac{dW}{dz} \frac{1}{\pi\lambda} \ln R/r_i$$

$$ln \; R/r_i \; \sim 4.0$$

Semi-infinite body with no cooling, only transient with uniform heating with time over duration τ :

$$T(r_{i}, \tau) = \frac{dW}{dz} \frac{1}{\pi \lambda} I(x)$$
$$x = \frac{r_{i}}{2} \sqrt{\frac{c\rho}{\lambda \tau}}$$

	I (x)				
	$\tau = 1s$	$\tau = 10s$			
Be	3.6	4.8			
С	4.0	5.1			
Al	4.2	5.3			
Cu	3.8	5.0			

 $I(\boldsymbol{x})$ varies only slowly with material and τ

Only Ionization: Power deposited at r_i:

$$\frac{dW}{dz} = \frac{dE}{d\xi} \cdot \rho \frac{dp}{dt} \cdot n$$
$$\frac{dE}{d\xi} \sim \frac{1.5 \text{ MeV cm}^2}{\text{gr}}$$

 $\rho = Density$

 $\frac{dp}{dt}$: N° of protons lost per time

n: No of traversals $\frac{x(abs)}{\Delta x}$

C (Be): $n = 40, \Delta x = 1 \text{ cm}$

Cu : $n = 40, \Delta x = 0.3$ cm

C (Be) : after n=40 all protons INTERACT in Δx . This adds only marginally (for Cu should be checked)

$$\frac{\mathrm{d}p}{\mathrm{d}t} = 10^{11} \mathrm{ per s}$$
:

$\Delta T(r_i, \tau)[K]$								
	N	Δx[cm]	dW/dz[Watt/cm]	$\tau = 1s$	$\tau = 10s$	$\tau = \infty$ + Cool.		
Be	40	1	1.73	13.2	17.6	14.7		
C	40	1	1.73	18.4	23.5	18.4		
Al	40	0.9	2.6	29.0	35.8	27.6		
Cu	40	0.3	8.6(?)	51.7	68.0	54		

CONCLUSION

One can intercept with and finally interact in "Short" collimators in C, Be about 10^{12} p/s over 10 s (or permanently). In Al, Cu(?) about 4 x 10^{11} p/s over 10 s (or permanently).

What to do with 99.999 % of the escaping power???

For similar studies with "long" collimators we need FLUKA (Vasilis, Alfredo).