Scope and priorities for 2006 LHC collimator beam tests:

Draft RWA 2/10/2006 for discussion

TT40

- 1. Repeat 2004 robustness tests (essentially 5-6 full intensity shots at depths from 0-5 mm. Plus each 1 shot for 1, 2, 3 batches at 5 mm depth plus set-up shots at lower intensity.
- 2. Measure jaw vibrations during and after beam impact (at jaw support point and jaw middle point → doubles number of shots) as a bacic cross-check of predictions (not possible in the LHC).
- 3. Investigate usage of accelerometers and microphones for **impact** detection in the LHC (iteration on 2004 results).

Beam conditions:

Energy	450 GeV
Bunch intensity	1.10E+11
Number of bunches	288
Emittance	~ 3.75 μm

Collimator conditions:

Same location in TT40 as in 2004 (under vacuum)

Horizontal collimator orientation One jaw only will be installed

Window in the tank to measure vibrations with a laser vibrometer

Beam required for test:

Number of nominal shots on jaw Beam-jaw alignment tolerance 6 x 3.3e13

1 mm

Beam required for beam set-up:

Same as in 2004.

• LSS5

- Check and test as much of the LHC collimator controls infrastructure as possible (low level, medium level, top level with HW, FESA, logging, ... interfaces).
- 2. Assess limitations in applied controls approach and understand areas to be improved (calibration, reaction speed, refresh rates, safety related info, failures, ...).
- 3. Beam loss observations with collimators and BLM's (see list): time response, repopulation, loss maps, collimator jaw BB calibration, ...
- **4. Impedance measurements** of jaws. Higher priority if by-pass effect can be measured.
- **5.** Vacuum behavior during beam loss.

SPS

Time allocated: 2 x 24 h

(a) Low intensity measurements

Bunch population	1.1e11 p
Number of bunches	1 to 16
Beam energy	270 GeV
Emittance	~ 1 µm
H beam size at collimator	~ 0.4 mm
Beam orbit stability	~ 10 µm

(b) High intensity measurements

Bunch population	1.1e11 p
Number of bunches	288
Beam energy	270 GeV
Emittance	~ 3.75 µm
H beam size at collimator	~ 0.7 mm

Time required [h]	Task
8	Set-up of low intensity stored beam (see above)
4	Set-up of high inetnsity stored beam (see above).
3	Access for installation of latest sensors, motors and for checks and debugging.
6	Control software commissioning: Commssion control of
	collimator + sensors + switches+ BLM's from CCC. Check
	interlocks. Measure sensor offsets, linearity, mechanical play,
	and input to software database.
6	Collimator calibration: Calibrate jaw psoitions with respect to beam (a) by touching beam (non-destructive) and (b) by scraping (destructive). Determine accuracy of method and iterate if necessary (2nd phase control software commissioning).
6	Impedance: (a) Repeat the tune shift vs. collimator gap measurement, possibly for different emittances and bunch lengths. (b) Tune shift vs. position of single collimator jaw. (c) Verify the inductive bypass.
6	Halo studies: Re-population versus current, jaw setting, lifetime, Characterize beam loss tails for understanding required waiting time.
3	Controls commissioning high I: Temeperature sensors, EM noise signals, cooling,
4	Beam loss maps: Beam loss maps at under controlled conditions,
	for various intensities. Loss maps with closed orbit bump. Loss
	maps and diffusion with non-linear bump.
2	Vacuum pressure at the LHC prototype collimator.

- → Today we should try to fill the outline from February with details...
- This includes beam conditions for various tests (special 60 GeV for impedance measurement?), planned measurements, time estimates for various measurements, priorities, ...
- → Final program: Aim for October 23rd.