RF Fingers for Secondary Collimators

- Layout & constraints: heating, contact resistance
- Choice of materials
- Experimental results on contact resistance
- Calculations of thermal load
- Estimates of mechanical load and long term stability

Boundary conditions (nominal beam, normal run)

- Power from particle bombardment on the RF contacts of the first secondary collimator TCSGA6 (from V. Vlachoudis data):
 - Peak power deposition: 5 W/cm³
 - Average power deposition: 2.6 W/cm³
- Power deposition on RF contacts of secondary collimators 1 to 8 (relative to the first):
 - $-1,\,0.14,\,0.22,\,0.08,\,0.01,\,0.03,\,0.04,\,0.04$
- Power deposition from RF trapped modes (from A. Grudiev):
 - 1 W per each set of 15 fingers assuming they are made of Cu
 - Same power for CuBe fingers plated with at least 6 μ m of Ag ($\cong 3\delta$)
- Contact resistance for each side of a collimator jaw (from F. Ruggiero):
 - < 1 mOhm</p>
- Vacuum bakeout at 250 °C

Present layout

Choice of materials: contact resistance

- Based on the experience of the cold interconnects and LEP (of course...)
 - For the best contact resistance a pair of noble metals (soft-soft or hard-soft) has to be used. No oxide that reduces contact resistance.
- RF fingers of CuBe, Ag plated 25 µm
 - Au cannot be used because of bakeout at 250 °C
 - Thick plating withstands wear
- Centring rings of s.steel Rh plated 2 µm
 - Round contact corner, electropolished
 - Rh is very hard
 - No interdiffusion Rh-Ag up to 600 °C

Choice of materials: which CuBe alloy? General properties

Standard alloy (CERN stores): low conductivity, high yield strength (~"elastic limit")

			Yield		Fatigue	HARDNESS (see note 4)			-
		Tensile	Strength	Elongation	Strength		Roc	kwell	Electrical
Alloy	Temper (note 2)	Strength (ksi)	0.2% offset (ksi)	Percent (note 3)	(ksi) R = -1, 10º cycles	Diamond Pyramid	B or C	Superficial	Conductivity (% IACS)
25 C17200	A Dead Soft (TB00)1	60-76	28-36	35-65	30-35	90-144	B45-78	30T46-67	15-19
	A Planished (TB00) ¹	60-78	30-55	35-60	30-35	│ 100 kpsi= 6.89 MPa			15-19
	1/4 H (TD01)	75-88	60-80	20-45	31-36	121-185	B68-90	30T62-75	15-19
	1/2 H (TD02)	85-100	75-95	12-30	32-38	176-216	B88-96	30T74-79	15-19
	H (TD04)	100-120	90-115	2-18	35-39	216-287	B96-102	30T79-83	15-19
	AT (TF00) ⁵	165-195	140-175	3-15	40-45	353-413	C36-42	30N56-62	22-28
	1/4 HT (TH01) ⁶	175-205	150-185	3-10	40-45	353-424	C36-43	30N56-63	22-28
	1/2 HT (TH02) ⁶	185-215	160-195	1-8	42-47	373-435	C38-44	30N58-63	22-28
	HT (TH04) ⁶	190-220	165-205	1-6	45-50	373-446	C38-45	30N58-65	22-28

High conductivity alloy (ex. "cold interconnects"), lower yield strength

174 C17410	1/2 HT (TH02)	95-115	80-100	10-20	40-45	180-230	B89-98	30T75-82	50 min
	HT (TH04)	110-130	100-120	7-17	40-45	210-278	B95-102	30T79-30N48	45-60

All have E=130÷140 GPa independent of composition or of thermal treatment ("age hardening")

Contact resistance: results (carried out with CERN CuBe)

- Thick fingers
- CuBe C17200 ½ HT, 0.5 mm thick, 8 µm Ag plating, old centring rings (with sharp contact point)
- R contact < 0.5 mOhm for the entire set of fingers (value limited by the bulk resistance of the fingers)

- Thin fingers
- CuBe C17200 ½ HT, 0.3 mm thick, 25 μm Ag plating, new centring rings (with rounded contact point)
- R contact < 0.7 mOhm for the entire set of fingers (value limited by the bulk resistance of the fingers)

The contact resistance is correct with this choice of materials and platings

LHC-CWG 14.2.2005

Sergio Calatroni, Wil Vollenberg TS/MME

Wear after 1500 cycles (4 years LHC life) CuBe 0.5 mm thick

Ag thickness in µm on

LHC-CWG 14.2.2005

Sergio Calatroni, Wil Vollenberg TS/MME

Heating effect including particle bombardment and RF

The Wiedemann-Franz law relates the bulk thermal conductivity to the electrical conductivity for metals.

 $K_{thermal}/\sigma_{electrical}T = 2.45 \times 10^{-8} \text{ W}.\Omega/\text{K}^2 (Lorenz \text{ number})$

This law can be extrapolated to estimate the contact thermal conductance from the measured contact electrical resistance (extrapolation at 300 K)

 $\mathsf{R}_{\mathsf{contact}} \cong 8 \ \mathsf{m}\Omega \Rightarrow \mathsf{C}_{\mathsf{contact}} \cong 0.001 \ \mathsf{W/K}$

Heating effect including particle bombardment and RF (first collimator)

Power deposition: From particles 1.1 W / finger at 0.55 mm thickness (CuBe+Ag) From trapped modes 0.07 W / finger if Ag plated

Blackbody heat radiation: 0.18 W per finger at 300 °C

	T _{max} for 0.3 mm thickness of the fingers	T _{max} for 0.5 mm thickness of the fingers
	(T _{max} without contact at the flange side)	(T _{max} without contact at the flange side)
CuBe C17200 ½ HT (standard alloy) + Ag plating 2*25 µm	T _{max} = 200 °C (T _{max} = 325 °C)	T _{max} = 225 °C (T _{max} = 350 °C)
CuBe C17410 ½ HT (high-conductivity alloy) + Ag plating 2*25 µm	T _{max} = 125 °C (T _{max} = 200 °C)	T _{max} = 150 °C (T _{max} = 200 °C)

(Assuming power density by particle bombardment in Ag≅Cu) (Both the thermal conductivity and contact thermal conductance would increase with temperature)

Bending stress

- CuBe thickness 0.5 mm
- Force = 13 grams on centre finger
- Max stress $\sigma_{max} = 130$ MPa

- CuBe thickness 0.3 mm
- Force = 2.9 grams on centre finger
- Max stress $\sigma_{max} = 80$ MPa

CuBe standard C17200 ½ HT $\rightarrow \sigma_{0.2}$ = 1240 MPa CuBe high conductivity C17410 $\frac{1}{2}$ HT $\rightarrow \sigma_{0,2}$ = 620 MPa

Even with the high-conductivity alloy the maximum stress is ~ 20 % of the yield strength

A final word on...

- Further testing
 - Long wear test (15000 cycles) combined with 250 °C are under way
- Electrical contact between C-C jaw and CuBe
 - At present is only done with two screws and $\rm R_{contact} \sim 0.5~mOhm$
 - It is foreseen to use a more stable mechanical fixation ("IKEA" type) that would only improve the contact resistance
 - The front edge of C-C should be plated ("active braze alloy") or a Cu foil brazed in order to improve the contact resistance for the first collimator. Contact resistance in this configuration has been measured at ~ 0.03 mOhm (included in the previous calculations)
 - Maybe a small edge will be machined in order to guarantee that the current flows at the surface
- Longitudinal contacts
 - They must withstand a wear equivalent to 15000 cycles (open-close of the jaw) times 30 mm \cong 1 km !
 - Silver plated CuBe Ag plated sliding onto electropolished s.steel plates
 - The wear test has been performed, waiting for microscope observation. No sticking of contacts has been observed in vacuum (but no bakeout test yet)

Heating effect including particle bombardment and RF (first collimator NEW)

Power deposition: - From particles 0.23 W / finger at 0.55 mm thickness (1.1 W/cm³) - From trapped modes 0.16 W / finger if Ag plated

(Blackbody heat radiated: 0.02 W per finger at 100 °C)

New estimates for worst finger – continuous operation of the machine at 0.8e11 p/sec losses

 Includes contact resistance of 8 mOhm / finger at flange side and 1.5 mOhm / finger at C-C side (hoped for with new "IKEA" fixing)

	ΔT_{max} for 0.3 mm thickness of the fingers	ΔT_{max} for 0.5 mm thickness of the fingers
	$(\Delta I_{max}$ without contact at the flange side)	$(\Delta I_{max}$ without contact at the flange side)
CuBe C17200 ½ HT	∆T _{max} = 125 °C	∆T _{max} = 125 °C
(standard alloy)	(∆T _{max} = 200 °C)	(∆T _{max} = 200 °C)
+ Ag plating 2*25 μm		
CuBe C17410 ½ HT	∆T _{max} = 100 °C	∆T _{max} = 100 °C
(high-conductivity alloy)	(∆T _{max} = 150 °C)	(∆T _{max} = 150 °C)
+ Ag plating 2*25 μm		

(Assuming power density by particle bombardment in Ag≅Cu) (Both the thermal conductivity and contact thermal conductance would increase with temperature)

