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Introduction

3

x 200!!

Stored energy ~ 2 x 360 MJ
Quench limit ~ 10 mJ / cm3

Damage (metal) ~ 50 kJ / mm2

➙Control losses 1000 time 
better than the state-of-the-art! 

➙Need collimation at all 
machine states: injection, 
ramp, squeeze, physics

➙Important role of collimation 
system for machine protection 

Cleaning

Protection

Eb = 7 TeV - Ib = 3.4x1014

R. Assmann
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The Phase I LHC collimation system
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The Phase I LHC collimation system
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Two warm cleaning insertions

 IR3: Momentum cleaning

 
 1 primary (H)
 → TCP [C]

 
 4 secondary (H,S) 
 → TCS [C]

 
 4 shower abs. (H,V)
→ TCLA [W]

 IR7: Betatron cleaning

 
 3 primary (H,V,S)

 
 11 secondary (H,V,S)

 
 5 shower abs. (H,V)

 
 3 beam scrapers (H,V,S)

Picture by C. Bracco



S. Redaelli, BEAM’07, 02-10-2007

The Phase I LHC collimation system

4

Two warm cleaning insertions

 IR3: Momentum cleaning

 
 1 primary (H)
 → TCP [C]

 
 4 secondary (H,S) 
 → TCS [C]

 
 4 shower abs. (H,V)
→ TCLA [W]

 IR7: Betatron cleaning

 
 3 primary (H,V,S)

 
 11 secondary (H,V,S)

 
 5 shower abs. (H,V)

 
 3 beam scrapers (H,V,S)

Local cleaning at triplets

 
 8 tertiary (2 per IP)→ TCT [W]

Picture by C. Bracco



S. Redaelli, BEAM’07, 02-10-2007

The Phase I LHC collimation system

4

M
ul

ti-
st

ag
e 

ha
lo

 c
le

an
in

g Two warm cleaning insertions

 IR3: Momentum cleaning

 
 1 primary (H)
 → TCP [C]

 
 4 secondary (H,S) 
 → TCS [C]

 
 4 shower abs. (H,V)
→ TCLA [W]

 IR7: Betatron cleaning

 
 3 primary (H,V,S)

 
 11 secondary (H,V,S)

 
 5 shower abs. (H,V)

 
 3 beam scrapers (H,V,S)

Local cleaning at triplets

 
 8 tertiary (2 per IP)→ TCT [W]

Picture by C. Bracco



S. Redaelli, BEAM’07, 02-10-2007

The Phase I LHC collimation system

4

M
ul

ti-
st

ag
e 

ha
lo

 c
le

an
in

g Two warm cleaning insertions

 IR3: Momentum cleaning

 
 1 primary (H)
 → TCP [C]

 
 4 secondary (H,S) 
 → TCS [C]

 
 4 shower abs. (H,V)
→ TCLA [W]

 IR7: Betatron cleaning

 
 3 primary (H,V,S)

 
 11 secondary (H,V,S)

 
 5 shower abs. (H,V)

 
 3 beam scrapers (H,V,S)

Local cleaning at triplets

 
 8 tertiary (2 per IP)→ TCT [W]

Physics debris absorbers [ Cu ]

 
 2 TCLP’s (IP1/IP5)

Protection (injection/dump)

 
 10 elements →TCLI/TCDQ [ C ]

Transfer lines

 
 13 collimators → TCDI [ C ]

Passive absorbers for warm magnets

Picture by C. Bracco



S. Redaelli, BEAM’07, 02-10-2007

The Phase I LHC collimation system

4

M
ul

ti-
st

ag
e 

ha
lo

 c
le

an
in

g

44 movable ring 
collimators per beam 

for the Phase I system!

Two warm cleaning insertions

 IR3: Momentum cleaning

 
 1 primary (H)
 → TCP [C]

 
 4 secondary (H,S) 
 → TCS [C]

 
 4 shower abs. (H,V)
→ TCLA [W]

 IR7: Betatron cleaning

 
 3 primary (H,V,S)

 
 11 secondary (H,V,S)

 
 5 shower abs. (H,V)

 
 3 beam scrapers (H,V,S)

Local cleaning at triplets

 
 8 tertiary (2 per IP)→ TCT [W]

Physics debris absorbers [ Cu ]

 
 2 TCLP’s (IP1/IP5)

Protection (injection/dump)

 
 10 elements →TCLI/TCDQ [ C ]

Transfer lines

 
 13 collimators → TCDI [ C ]

Passive absorbers for warm magnets

Picture by C. Bracco



S. Redaelli, BEAM’07, 02-10-2007

Multi-stage collimation at the LHC

5

Cold aperture

Circulating beam

Warm cleaning insertion Arc(s) IP

(An illustrative scheme)
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Multi-stage collimation at the LHC
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Accurate tracking of halo particles
6D dynamics, chromatic effects, δp/p, 
high order field errors, ... 

SixTrack
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Example - one particle’s trajectory

• Scattering routine called within tracking at each collimator
• If particle touches jaw, calculate absorption, offsets, 

scattering angles and energy error
• Trajectories of halo particles saved for off-line aperture 

analysis (∆s < 10 cm)
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Example - one particle’s trajectory

• Scattering routine called within tracking at each collimator
• If particle touches jaw, calculate absorption, offsets, 

scattering angles and energy error
• Trajectories of halo particles saved for off-line aperture 

analysis (∆s < 10 cm)

R.Assmann at al., 
LHC-PR 639 (2003)

TOOLS FOR PREDICTING CLEANING EFFICIENCY IN THE LHC

R. Aßmann, M. Brugger, M. Hayes, J.B. Jeanneret, F. Schmidt, CERN, Geneva, Switzerland

I. Baichev, IHEP, Protvino, Russia

D. Kaltchev, TRIUMF, Canada

Abstract

The computer codes Sixtrack and Dimad have been

upgraded to include realistic models of proton scattering

in collimator jaws, mechanical aperture restrictions, and

time-dependent fields. These new tools complement long-

existing simplified linear tracking programs used up to now

for tracking with collimators. Scattering routines from

STRUCT and K2 have been compared with one another

and the results have been cross-checked to the FLUKA

Monte Carlo package. A systematic error is assigned to

the predictions of cleaning efficiency. Now, predictions

of the cleaning efficiency are possible with a full LHC

model, including chromatic effects, linear and nonlinear er-

rors, beam-beam kicks and associated diffusion, and time-

dependent fields. The beam loss can be predicted around

the ring, both for regular and irregular beam losses. Exam-

ples are presented.

INTRODUCTION

The collimation system of the LHC [1] requires an excel-

lent cleaning efficiency in order to avoid quenches of the

super-conducting magnets. Various numerical tools used

for prediction of cleaning efficiency were compared. The

programs include generation of a primary beam halo, scat-

tering of high energy protons through material and tracking

of beam halos in the storage ring. The degree of agreement

between different codes is discussed. Differences are used

to assess possible systematic errors.

SCATTERING CODES

The physics of proton scattering in the material of col-

limator jaws has been implemented in various computer

codes. The scattering routines track the protons through

some length of a given material having them interacting

with the proper cross-sections. The protons receive trans-

verse kicks ∆θx, ∆θy and offsets ∆x, ∆y and some mo-
mentum loss δ = ∆p/p0. Note that a full shower calcula-

tion is not required for predicting the cleaning of ”primary”

beam protons.

The primary protons in the LHC have energies from

450 GeV at injection to 7 TeV at top. The scattering rou-

tines must correctly describe the interactions over the full

range of energies, allow for different jaw materials, and in-

clude the correct jaw geometry, as protons impact at very

close distance from the edge of the jaw.

Three different scattering routines were compared:

1. K2 was developed in the 1990’s by Jeanneret and

Trenkler for studies of LHC collimation [2].

2. STRUCT was developed in the 1980’s by Baichev

et al, amongst others for studies of lHC and SSC collima-

tion [3].

3. FLUKA is a general purpose scattering and showering

code [4].
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Figure 1: Scattering probabilities for one 7 TeV proton im-

pacting on a 0.5 m long Cu jaw. Change in position (top),

angle (middle) and energy (bottom).

A test case was defined for the three routines: A 7 TeV

pencil beam with zero angle (y′ = 0) impacting y = 1µm
from the edge of a 0.5 m long vertical collimator, made of

Cu. The changes in particles offsets, angles, and momen-

tum were recorded. The comparison of the different scat-
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A test case was defined for the three routines: A 7 TeV

pencil beam with zero angle (y′ = 0) impacting y = 1µm
from the edge of a 0.5 m long vertical collimator, made of

Cu. The changes in particles offsets, angles, and momen-
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Cleaning performance at 7 TeV

8

Beam1

Losses in collimators Losses in cold apert.

Beam2

Legend:
Black = okay
Controlled losses 
at the collimators

Blue = BAD!
Losses in cold 
aperture 
→quench

Only a few loss 
locations 
outside the 
collimators 
(ideal 
performance)

Betatron cleaning

(Nominal intensity, ideal performance, τb=0.2h)
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Details of beam 1 losses, 7 TeV

9

0 5 10 15 20 25 30

106

107

108

109

1010

1011

Longitudinal coordinate, s [ m ]

Lo
ss

 ra
te

 p
er

 u
ni

t l
en

gt
h 

[ p
/m

/s
 ]

IP2 IP3 IP4 IP5 IP6 IP7 IP8 IP1

Beam 1

(Nominal intensity, ideal performance, τb=0.2h)

By design, losses are 
concentrated in the 
warm insertion.

However, there is 
some leakage (~10-4): 
losses in the 
dispersion suppressor 
from single diffractive 
interaction with 
primary collimators.

This limits the Phase I 
performance.
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Cleaning performance at 450 GeV
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Cleaning during energy ramp
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Beam cleaning needed throughout the ramp! 
Collimator settings: trade off between
- Optimum cleaning

 Maintain canonical 6/7σ settings!

 σInj ≈ 1 mm → σ7TeV ≈ 0.25 mm
- Ease operation in early commissioning

 Keep injection settings until β-squeeze!
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Cleaning during energy ramp
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C. Bracco

Beam cleaning needed throughout the ramp! 
Collimator settings: trade off between
- Optimum cleaning

 Maintain canonical 6/7σ settings!

 σInj ≈ 1 mm → σ7TeV ≈ 0.25 mm
- Ease operation in early commissioning

 Keep injection settings until β-squeeze!

Proposed optimized setting during 
energy ramp: 
Constant retraction in millimeters: 
easy tolerances + sufficient cleaning 
at startup with reduced intensities.
Detailed commissioning scenarios 
worked out by C. Bracco (PhD work).
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Overview of energy deposition studies

Energy deposition studies play a major role in the system design!
➙ Energy in the super-conducting magnets versus quench limit
➙ Determine the BLM locations for optimum response (BI team)
➙ Estimate life time of warm magnets/electronics (passive absorbers)
➙ Quantify dose to personnel and impact on the environment
➙ Optimize layout of insertion (shielding design)
➙ Calculate heating of critical components
➙ Beam halo loads in specific locations (e.g., LHC beam dump)
➙ Detector background from tertiary collimators (IHPE + US-LARP)
All these studies for the LHC rely on the results of our simulations!

Distribution of inelastic interactions 
within collimator jaw material is 
used as an input for energy 
deposition studies (collaboration 
with the CERN FLUKA team).

Impact 
distribution at 

the TCP

See overview talk by M. Brugger at the recent 
Collimator Material workshop at CERN.
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Radiation doses in IR7
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- 8 -

Figure 3 Dose rate distributions along the tunnel in Gy/year. The values shown are the

average of ±1m vertically from the beam line. In the upper figure the dose rate

distribution is plotted as a histogram and in the lower figure the same values are

shown in a contour plot together with the geometry. The regions of interest (RR73,

UJ76, RR77 – from left to right on the figure) are marked with the blue vertical

lines.

IR7

WARM
COLDCOLD

K. Tsoulou et al

Radiation is confined within the warm insertions!
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Figure 3 Dose rate distributions along the tunnel in Gy/year. The values shown are the

average of ±1m vertically from the beam line. In the upper figure the dose rate

distribution is plotted as a histogram and in the lower figure the same values are

shown in a contour plot together with the geometry. The regions of interest (RR73,

UJ76, RR77 – from left to right on the figure) are marked with the blue vertical

lines.
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K. Tsoulou et al

Radiation is confined within the warm insertions!
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Optimization of the BLM locations
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Courtesy of 
L. Ponce

Detailed loss maps around the 
ring used to determine the location 
of the beam loss monitors (BLM’s)

Critical elements for active 
machine protection: trigger dump 
in case of abnormal losses

Final layout: 6 monitors per quadrupole 
+ dedicated monitor (dispersion 
suppressor downstream of IR7)
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Outline of my talk
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• Introduction
• Loss studies for the LHC

 Simulation tools

 Performance of a perfect system

 Energy deposition studies

• Imperfection models

 Jaw surface deformations

 Aperture alignment errors
• Loss studies at the SPS

 Experimental layout

 Simulated versus measured losses
• Conclusions
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Optics errors
Closed orbit distortion, coupling, static and 
dynamic beta-beat (on- and off-momentum), 
non-linear field errors, feed-down from 
alignment errors, ...

Collimator errors
Alignment (set-up) errors, tilts, surface flatness

Aperture imperfections
Statistical errors, manufacturing errors, 
measured alignment, ...

Full MADX optics 
model implemented 

in SixTrack 

Detailed collimator 
geometry in our 

scattering routine

Dedicated tools in 
aperture program
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Jaw flatness errors

17

Effect of flatness errors: 
- Halo particles interact with less material: 

 → Reduced absorption!
- More losses close to the downstream edge

 → More particles/showers escape
- Higher deposited energy density

Collimator jaw 
bulk material

Beam

1m jaw (TCSG)

Perfect surface
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“Banana” shape

Simulations: can slice each collimator and assign any shape (polynomial fit)
Sensitivity studies + measured flatness from production

Error:
250 μm
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Sensitivity on flatness errors

18

Based on these studies, 
the production tolerance 
was set to 40 μm.

Tolerance achieved in 
production. 
Database of flatness data 
being prepared to study 
the performance of the 
“as-built” system.

(parabolic “banana” deformation of all secondary collimators)

50 % lost of cleaning efficiency 
for errors of ~ 50 μm
Factor 2-3 for errors above 
250 μm
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Random aperture alignment errors

19

- Alignment errors in the aperture model: 
many “machines” for one tracking run!

- Random errors (H+V) applied to relevant 
elements per type: MB’s, MQ’s, MQX’s, 
BPM’s, ... 

Ex.: 2250 elements moved; 20 random seeds
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- 10cm level: higher 
loss spikes!

- Total losses in single 
cryostat 15-20% 
higher

- New loss locations!
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Measured alignment errors

20

Work in progress: apply measured 
alignment error along magnet cold bore 
(~10 cm level) → “as-built” aperture model
Database of measured alignment errors 
being setup/interfaced to code (ABP/LCU
+AT/MCS)
Example: Q9 downstream of betatron 
cleaning at injection (data from M. Giovannozzi)
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• Introduction
• Loss studies for the LHC

 Simulation tools

 Performance of a perfect system

 Energy deposition studies
• Imperfection models

 Jaw surface deformations

 Aperture alignment errors
• Loss studies at the SPS

 Experimental layout

 Simulated versus measured losses
• Conclusions

Outline of my talk
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Layout of collimator tests at the SPS

22

A horizontal LHC collimator 
prototype (full mechanical 

functionalities) installed in SS5 
for beam tests.
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SPS optics and aperture

23

Prototype LHC collimatorMain beam parameters
βx = 24.9m 
            ➘ σx ≈ 0.7mm

βy = 89.9m 
            ➘ σy ≈ 1.3mm

En = 270 GeV / c
ε ≈ 1-3 µm

Aperture model by G. Arduini
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SPS optics and aperture
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Generation and measurement of losses

24

Lifetime of SPS coasting beam: > 100h!  How do we generate proton losses?


 ➙ Full or partial beam scraping with the collimator jaw!

Simulations were updated to include time-dependent 

jaw movements: 

 - 1 or 2 jaws can be moved at a speed of 2 mm/s

 - 20000 turns for the sweep across the beam



S. Redaelli, BEAM’07, 02-10-2007

Generation and measurement of losses

24

Lifetime of SPS coasting beam: > 100h!  How do we generate proton losses?


 ➙ Full or partial beam scraping with the collimator jaw!

• One ionization chamber per quadrupole 
→ Total of 36x6=216 BLM’s

• QD (smaller σx) have one H monitor and vice-versa
• Losses integrated over 1 super-cycle of ~ 25 s

Ionization chamber

Simulations were updated to include time-dependent 

jaw movements: 

 - 1 or 2 jaws can be moved at a speed of 2 mm/s

 - 20000 turns for the sweep across the beam
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Comparison of overall loss pattern

25
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We look at small loss peaks in regions with no collimators:
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Measurements Simulations

Simulations agree qualitatively with measurements 
also at locations without collimators!
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We look at small loss peaks in regions with no collimators:
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Simulations agree qualitatively with measurements 
also at locations without collimators!
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Simulation further downstream

27
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Simulation further downstream

27
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The peak is downstream 
of the BLM location!
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Simulation further downstream

27
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The peak is downstream 
of the BLM location!

Difference understood if details 
of BLM mounting are taken into account!

We can nicely simulate losses but, of 
course, cannot measure without BLM’s!
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Simulation further downstream
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• The simulation tools for LHC beam loss studies were presented
• Codes evolved during the years to match the increasing complexity 

of the LHC collimation system
• Played a major role in the improvement of the final multi-stage 

system from the original 2-stage cleaning
• Detailed error models developed to understand the performance of 

the realistic and “as-built” machine
• Crucial importance for energy deposition and background studies
• Tools are portable end documented on the web - extension to other 

machines is straightforward!
• Application to collimator induced beam loss at the SPS showed a 

good agreement between simulations and measurements

Conclusions
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Beam halo loads in the dump region

31
Energy deposition studies by L. Sarchiapone

Higher loss rates at 
the TCDQ for beam2

- Critical loss rates for beam 2: dump region 
immediately downstream of betatron cleaning

- Detailed simulation campaigns to investigate 
commissioning scenarios with reduced 
collimation system (C. Bracco, T. Weiler)

- Proposed additional shielding to achieve 
ultimate intensities
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Closed-orbit distortions

32

LHC tolerance:  
± 4mm in arcs, ± 
3mm in insertions.
Scans of 
amplitude and 
phase of orbit 
errors to find 
critical spots. 
Extensive studies 
by G. Robert-
Demolaize (PhD 
work).
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Improvements of the system

33There are still losses above the quench limit!

Full system with TCT’s + absorbers

2 stage cleaning in IR7 (as of Jan. 2005)

Beam

IP2
 IP3
 IP4
 IP5
 IP6
 IP7
 IP8
 IP1

TCLA + TCT
➙Significant 
improvement in 
the IR’s 

Before 
➙many losses 
outside 
collimators!
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Random aperture alignment errors

34
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1. Loss spikes at the 
10cm level much higher 
(effect on quench 
performance to be 
understood)
2. Total losses in single 
cryostat up to 15-20% 
higher
3 .New loss locations!
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Time-dependent jaw movements

35

Simulations include time-dependent jaw movements (new feature)
 ➘  Single or both jaws can be moved at their real speed
 ➘  Long tracking runs ~ 20000 turns to simulate the full sweep across the beam

Csps ≈ 6.9 km
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Time-dependent jaw movements

35

Simulations include time-dependent jaw movements (new feature)
 ➘  Single or both jaws can be moved at their real speed
 ➘  Long tracking runs ~ 20000 turns to simulate the full sweep across the beam

Model accurate to the < 1e-4 level

Can the BLM’s measure 
this wide dynamic range?

Csps ≈ 6.9 km
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More details of the SPS simulations

36
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The comparison showed that the correct settings of 
septum collimator were missing in first simulation runs!

37
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