Precision of collimator jaw positioning and gap values

S. Redaelli, R. Assmann, C. Bracco, M. Jonker, A. Masi, R. Losito, G. Robert-Demolaize, M. Sobczak, T. Weiler

Topics

1. Introduction

Jaw position measurements
Philosophy of collimator settings controls
2. Mechanical reproducibility
3. Performance of jaw position monitoring
4. Gap values
5. Conclusions

Introduction

SPS prototype

- 4 LEP stepping motors used to move the jaw corners
- 4 resolvers count the motor steps
- 4 potentiometers measure the actual jaw position
- 2 LVDT's provide direct gap measurements
- 10 switches prevent breaking the mechanics
(full-IN + full-OUT per each corner + 2 anti-collision)

2004 performance (LCWG, 20/09/2004)

- Extensive measurement campaigns at the metrology
- Reproducibility of switches: $\sim 30-50 \mu \mathrm{~m}$ (going IN)
- Resolvers and motors worked reliably

Motors more precise: error $<15 \mu \mathrm{~m}$ vs $\sim 70-100 \mu \mathrm{~m}$ of resolvers

- Direct position measurements (potentiometers, LVDT's) did not work
- Jaw position measurements relied on counting the motor steps from the full-OUT switches
- Motors were reset at the full-out position (step count restarted)
- Achieved accuracy ~50 $\mu \mathrm{m}$

2004 performance (LCWG, 20/09/2004)

- Extensive measurement campaigns at the metrology
- Reproducibility of switches: $\sim 30-50 \mu \mathrm{~m}$ (going IN)
- Resolvers and motors worked reliably

Motors more precise: error $<15 \mu \mathrm{~m}$ vs $\sim 70-100 \mu \mathrm{~m}$ of resolvers

- Direct position measurements (potentiometers, LVDT's) did not work
- Jaw position measurements relied on counting the motor steps from the full-OUT switches
- Motors were reset at the full-out position (step count restarted)
- Achieved accuracy ~50 $\mu \mathrm{m}$

> The collimator was not re-calibrated, nor the sensors were revised, since Aug. 2004

2004 performance (LCWG, 20/09/2004)

- Extensive measurement campaigns at the metrology
- Reproducibility of switches: $\sim 30-50 \mu \mathrm{~m}$ (going IN)
- Resolvers and motors worked reliably

Motors more precise: error $<15 \mu \mathrm{~m}$ vs $\sim 70-100 \mu \mathrm{~m}$ of resolvers

- Direct position measurements (potentiometers, LVDT's) did not work
- Jaw position measurements relied on counting the motor steps from the full-OUT switches
- Motors were reset at the full-out position (step count restarted)
- Achieved accuracy ~50 $\mu \mathrm{m}$

Settings control philosophy

- ABSOLUTE settings in the beam coordinate (compatibility with LSA TRIM)
- Middle- and high-level controls only use absolute settings
- Motor step counter is INDEPENDENT of the measured positions (no feedback)
- Operator can update the motor settings if he thinks they are wrong (e.g. if steps are lost inferred from position measurements)
- Automatic update of settings when the switches are activated

Mechanical reproducibility

We must rely on the old switch metrology data to get a reference! Precision will only be as good as the mechanical reproducibility...

Mechanical reproducibility

We must rely on the old switch metrology data to get a reference! Precision will only be as good as the mechanical reproducibility...

Full stroke (motor count reset to zero on the switches)

Mechanical reproducibility

We must rely on the old switch metrology data to get a reference! Precision will only be as good as the mechanical reproducibility...

Full stroke (motor count reset to zero on the switches)

Left - UP
Left - DW
Right - UP
Right - DW

Mechanical reproducibility

We must rely on the old switch metrology data to get a reference! Precision will only be as good as the mechanical reproducibility...

Full stroke (motor count reset to zero on the switches)

	Motors
Left - UP	34.038 ± 0.020
Left - DW	34.470 ± 0.007
Right - UP	33.810 ± 0.021
Right - DW	$\mathbf{3 4 . 0 0 8} \pm 0.017$

Mechanical reproducibility

We must rely on the old switch metrology data to get a reference!
Precision will only be as good as the mechanical reproducibility...
Full stroke (motor count reset to zero on the switches)

	Motors	Resolvers
Left - UP	$\mathbf{3 4 . 0 3 8} \pm \mathbf{0 . 0 2 0}$	34.050 ± 0.017
Left - DW	$\mathbf{3 4 . 4 7 0} \pm \mathbf{0 . 0 0 7}$	34.479 ± 0.003
Right - UP	$\mathbf{3 3 . 8 1 0} \pm \mathbf{0 . 0 2 1}$	33.711 ± 0.119
Right - DW	$\mathbf{3 4 . 0 0 8} \pm \mathbf{0 . 0 1 7}$	33.930 ± 0.014

Mechanical reproducibility

We must rely on the old switch metrology data to get a reference!
Precision will only be as good as the mechanical reproducibility...
Full stroke (motor count reset to zero on the switches)

	Motors	Resolvers	Potentiometers
Left - UP	$\mathbf{3 4 . 0 3 8} \pm \mathbf{0 . 0 2 0}$	34.050 ± 0.017	34.179 ± 0.005
Left - DW	$\mathbf{3 4 . 4 7 0} \pm \mathbf{0 . 0 0 7}$	34.479 ± 0.003	40.476 ± 0.349
Right - UP	$\mathbf{3 3 . 8 1 0} \pm \mathbf{0 . 0 2 1}$	33.711 ± 0.119	36.720 ± 0.105
Right - DW	$\mathbf{3 4 . 0 0 8} \pm \mathbf{0 . 0 1 7}$	33.930 ± 0.014	37.507 ± 0.085

Mechanical reproducibility

We must rely on the old switch metrology data to get a reference!
Precision will only be as good as the mechanical reproducibility...
Full stroke (motor count reset to zero on the switches)

	Motors	Resolvers	Potentiometers
Left - UP	$\mathbf{3 4 . 0 3 8} \pm \mathbf{0 . 0 2 0}$	34.050 ± 0.017	34.179 ± 0.005
Left - DW	$\mathbf{3 4 . 4 7 0} \pm \mathbf{0 . 0 0 7}$	34.479 ± 0.003	40.476 ± 0.349
Right - UP	$\mathbf{3 3 . 8 1 0} \pm \mathbf{0 . 0 2 1}$	33.711 ± 0.119	36.720 ± 0.105
Right - DW	$\mathbf{3 4 . 0 0 8} \pm \mathbf{0 . 0 1 7}$	33.930 ± 0.014	37.507 ± 0.085

Conclusions

- Mechanics behaves like in 2004
- Motors provide the most accurate position measure
- Resolver are less precise (seen differences up to $100 \mu \mathrm{~m}$)
- Direct position measurements basically cannot be used!

Accuracy: resolvers vs motors

Accuracy: resolvers vs motors

Transient differences from timing
errors (see next slide)
Transient differences from timing
errors (see next slide)

Accuracy: resolvers vs motors

Transient differences from timing
errors (see next slide)
Transient differences from timing
errors (see next slide)

Accuracy: resolvers vs motors

Transient differences from timing errors (see next slide)

Accuracy: resolvers vs motors

Transient differences from timing errors (see next slide)

Motors or resolvers are correct??

Accuracy: resolvers vs motors

Transient differences from timing errors (see next slide)

Motors or resolvers are correct??

Accuracy: resolvers vs motors

Transient differences from timing errors (see next slide)

Motors or resolvers are correct??

2004: resolvers were found to be less reliable than the motors We assume that this is still the case and we base the position measurements on the count of motor steps from the OUT switches

Time delay in the acquisition

Upstream

Error during movements cause by ~1s delay in the acquisition
Static values are better
Offsets from time delay changes during the MD Source of these delays needs to be understood!

Example of potentiometer data

Example of potentiometer data

Noise in the signal!

Example of potentiometer data

Noise in the signal!

Example of potentiometer data

Noise in the signal!

Is it worth re-calibrating these sensors and understand the data we have!?!

Example of potentiometer data

Noise in the signal!

Is it worth re-calibrating these sensors and understand the data we have!?!

Use motor step count from driver for the moment

Settings errors from loss steps

Problem of motor measurements: they are "upstream" of the mechanical structure and do not "see" mechanical plays!

Settings errors from loss steps

Problem of motor measurements: they are "upstream" of the mechanical structure and do not "see" mechanical plays!

Settings errors from loss steps

Problem of motor measurements: they are "upstream" of the mechanical structure and do not "see" mechanical plays!

Settings errors from loss steps

Problem of motor measurements: they are "upstream" of the mechanical structure and do not "see" mechanical plays!

Source of loss steps not yet understood...

Settings errors from loss steps

Problem of motor measurements: they are "upstream" of the mechanical structure and do not "see" mechanical plays!

Source of loss steps not yet understood...
... This is the reason why at the LHC we MUST HAVE direct jaw position measurement!

Collimator gap during MD

This example: gap versus time during impedance measurements, MD1 (see Chiaras and Elias talks) Anti-collision switch is consistent with 2004! Data is being provided to the impedance colleagues
More cumbersome that 2004 because motor data have to be manually set to switches...

Collimator gap during MD

This example: gap versus time during impedance measurements, MD1 (see Chiara s and Elias talks) Anti-collision switch is consistent with 2004! Data is being provided to the impedance colleagues
More cumbersome that 2004 because motor data have to be manually set to switches...

Conclusions

CERN

8 P
\square为
(Redaeli, LCWG 04/12/2006
\qquad
..

Conclusions

\square For the 2006 MD's the NEW controls architecture and setting philosophy were implemented in the OLD hardware

Conclusions

\square For the 2006 MD's the NEW controls architecture and setting philosophy were implemented in the OLD hardware
\square We believes that the technical choices are correct BUT a real demonstration has been jeopardized

Conclusions

\square For the 2006 MD's the NEW controls architecture and setting philosophy were implemented in the OLD hardware

■ We believes that the technical choices are correct BUT a real demonstration has been jeopardized
\square Nevertheless, we believe that we could achieve a measurement accuracy of about ~ $100 \mu \mathrm{~m}$ [preliminary!!]

- Based (1) on indications that the mechanics did not deteriorate in 2 years and (2) on the reliability of motor step size
- Position of the switches did not change?
- Motivations take out the collimator and perform new calibrations?

Conclusions

\square For the 2006 MD's the NEW controls architecture and setting philosophy were implemented in the OLD hardware
■ We believes that the technical choices are correct BUT a real demonstration has been jeopardized
■ Nevertheless, we believe that we could achieve a measurement accuracy of about $\sim 100 \mu \mathrm{~m}$ [preliminary!!]

- Based (1) on indications that the mechanics did not deteriorate in 2 years and (2) on the reliability of motor step size
- Position of the switches did not change?
- Motivations take out the collimator and perform new calibrations?
\square Beam tests in 2007 MUST be done with LHC hardware otherwise they risk to be inconclusive (time functions!)

Conclusions

\square For the 2006 MD's the NEW controls architecture and setting philosophy were implemented in the OLD hardware
\square We believes that the technical choices are correct BUT a real demonstration has been jeopardized
\square Nevertheless, we believe that we could achieve a measurement accuracy of about $\sim 100 \mu \mathrm{~m}$ [preliminary!!]

- Based (1) on indications that the mechanics did not deteriorate in 2 years and (2) on the reliability of motor step size
- Position of the switches did not change?
- Motivations take out the collimator and perform new calibrations?
\square Beam tests in 2007 MUST be done with LHC hardware otherwise they risk to be inconclusive (time functions!)
[More detailed results at the upcoming controls review

